【題目】為了解學(xué)生最喜愛的球類運(yùn)動,某初中在全校2000名學(xué)生中抽取部分學(xué)生進(jìn)行調(diào)查,要求學(xué)生只能從“A(籃球)、B(羽毛球)、C(足球)、D(乒乓球)”中選擇一種.

(1)小明直接在八年級學(xué)生中隨機(jī)調(diào)查了一些同學(xué).他的抽樣是否合理?請說明理由.

(2)小王從各年級隨機(jī)抽取了部分同學(xué)進(jìn)行調(diào)查,整理數(shù)據(jù),繪制出下列兩幅不完整的統(tǒng)計圖.請根據(jù)圖中所提供的信息,回答下列問題:

請將條形統(tǒng)計圖補(bǔ)充完整;

估計該初中最喜愛乒乓球的學(xué)生人數(shù)約為   人.

【答案】(1)不合理;(2)詳見解析;200.

【解析】

(1)全校每個同學(xué)被抽到的機(jī)會不相同,抽樣缺乏代表性;

2)①根據(jù)題意先算出被抽查的總?cè)藬?shù),再分別計算出C,D的人數(shù)即可;

②根據(jù)該初中最喜愛乒乓球的學(xué)生人數(shù)等于總?cè)藬?shù)乘以其所占的比例即可得出結(jié)論.

解:(1)不合理. 全校每個同學(xué)被抽到的機(jī)會不相同,抽樣缺乏代表性;

(2)①∵被調(diào)查的學(xué)生人數(shù)為24÷15%=160,

C種類人數(shù)為160×30%=48人,D種類人數(shù)為160﹣(24+72+48)=16,

補(bǔ)全圖形如下:

估計該初中最喜愛乒乓球的學(xué)生人數(shù)約為2000×=200人,

故答案為:200.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊AB在數(shù)軸上,數(shù)軸上點(diǎn)A表示的數(shù)為-1,正方形ABCD的面積為16

1)數(shù)軸上點(diǎn)B表示的數(shù)為 ;

2將正方形ABCD沿數(shù)軸水平移動,移動后的正方形記為移動后的正方形與原正方形ABCD重疊部分的面積記為S

當(dāng)S =4,畫出圖形并求出數(shù)軸上點(diǎn)表示的數(shù);

設(shè)正方形ABCD的移動速度為每秒2個單位長度,點(diǎn)E為線段的中點(diǎn)點(diǎn)F在線段,. 經(jīng)過秒后,點(diǎn)EF所表示的數(shù)互為相反數(shù),直接寫出的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,貨輪O在航行過程中,發(fā)現(xiàn)燈塔A在它南偏東60°的方向上,同時,在它北偏東30°、西北(即北偏西45°)方向上又分別發(fā)現(xiàn)了客輪B和海島C.

(1)仿照表示燈塔方位的方法,分別畫出表示客輪B和海島C方向的射線OB,OC(不寫作法);

(2)若圖中有一艘漁船D,且AOD的補(bǔ)角是它的余角的3倍,畫出表示漁船D方向的射線OD,則漁船D在貨輪O的 (寫出方位角)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,∠A=30°,∠B=60°.
(1)作∠B的平分線BD,交AC于點(diǎn)D;作AB的中點(diǎn)E(要求:尺規(guī)作圖,保留作圖痕跡,不必寫作法和證明);
(2)連接DE,求證:△ADE≌△BDE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,OA=OB=,AB=.若點(diǎn)A坐標(biāo)為(1,2),則點(diǎn)B的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班有學(xué)生55人,其中男生與女生的人數(shù)之比為6:5.
(1)求出該班男生與女生的人數(shù);
(2)學(xué)校要從該班選出20人參加學(xué)校的合唱團(tuán),要求:①男生人數(shù)不少于7人;②女生人數(shù)超過男生人數(shù)2人以上.請問男、女生人數(shù)有幾種選擇方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中有Rt△ABC,∠A=90°,AB=AC,A(﹣2,0)、B(0,1)、C(d,2).

(1)求d的值;
(2)將△ABC沿x軸的正方向平移,在第一象限內(nèi)B、C兩點(diǎn)的對應(yīng)點(diǎn)B′、C′正好落在某反比例函數(shù)圖象上.請求出這個反比例函數(shù)和此時的直線B′C′的解析式;
(3)在(2)的條件下,直線BC交y軸于點(diǎn)G.問是否存在x軸上的點(diǎn)M和反比例函數(shù)圖象上的點(diǎn)P,使得四邊形PGMC′是平行四邊形?如果存在,請求出點(diǎn)M和點(diǎn)P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在開展 校園獻(xiàn)愛心活動中,準(zhǔn)備向南部山區(qū)學(xué)校捐贈男、女兩種款式的書包已知男款書包的單價50元/個女款書包的單價70元/個

1原計劃募捐3400元,購買兩種款式的書包共60個那么這兩種款式的書包各買多少個?

2在捐款活動中,由于學(xué)生捐款的積極性高漲,實(shí)際共捐款4800元,如果至少購買兩種款式的書包共80個,那么女款書包最多能買多少個?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】大于1的正整數(shù)m的三次冪可“分裂”成若干個連續(xù)奇數(shù)的和.如23=3+5,33=7+9+11,43=13+15+17+19,…,若m3“分裂”后,其中有一個奇數(shù)是347,則m的值是_____

查看答案和解析>>

同步練習(xí)冊答案