【題目】如圖,△ABC,∠C=90°,∠B=30°,以點(diǎn)A為圓心,任意長(zhǎng)為半徑畫弧分別交AB,AC于點(diǎn)MN,再分別以點(diǎn)M,N為圓心,大于MN的長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)P,連接AP并延長(zhǎng)交BC于點(diǎn)D,則下列說法:①AD∠BAC的平分線;②∠ADC=60°;③點(diǎn)DAB的垂直平分線上;④SDAC:SABC=1:3.其中正確的是__________________.(填所有正確說法的序號(hào))

【答案】4

【解析】

①連接NPMP,根據(jù)SSS定理可得△ANP≌△AMP,故可得出結(jié)論;

②先根據(jù)三角形內(nèi)角和定理求出∠CAB的度數(shù),再由AD是∠BAC的平分線得出∠1=2=30°,根據(jù)直角三角形的性質(zhì)可知∠ADC=60°;

③根據(jù)∠1=B可知AD=BD,故可得出結(jié)論;

④先根據(jù)直角三角形的性質(zhì)得出∠2=30°,CD=AD再由三角形的面積公式即可得出結(jié)論

①連接NP,MP.在ANP與△AMP中,∵∴△ANP≌△AMP,則∠CAD=BAD,AD是∠BAC的平分線故此選項(xiàng)正確;

②∵在△ABC,C=90°,B=30°,∴∠CAB=60°.

AD是∠BAC的平分線,∴∠1=2=CAB=30°,∴∠3=90°﹣2=60°,∴ADC=60°,故此選項(xiàng)正確;

③∵∠1=B=30°,AD=BD,∴點(diǎn)DAB的中垂線上,故此選項(xiàng)正確;

④∵在RtACD,2=30°,CD=AD,BC=BD+CD=AD+AD=ADSDAC=ACCD=ACAD,SABC=ACBC=ACAD=ACADSDACSABC=13,故此選項(xiàng)正確

故答案為:①②③④

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列因式分解正確的是( )

A. x2y2-z2=x2y+z)(y-z B. -x2y+4xy-5y=-yx2+4x+5

C. x+22-9=x+5)(x-1 D. 9-12a+4a2=-3-2a2

【答案】C

【解析】解析:選項(xiàng)A.用平方差公式法,應(yīng)為x2y2-z2=xy+z·xy-z),故本選項(xiàng)錯(cuò)誤.

選項(xiàng)B.用提公因式法,應(yīng)為-x2y+ 4xy-5y=- yx2- 4x+5),故本選項(xiàng)錯(cuò)誤.

選項(xiàng)C.用平方差公式法,(x+22-9=x+2+3)(x+2-3=x+5)(x-1),故本選項(xiàng)正確.

選項(xiàng)D.用完全平方公式法,應(yīng)為9-12a+4a2=3-2a2,故本選項(xiàng)錯(cuò)誤.

故選C.

點(diǎn)睛:(1)完全平方公式: .

(2)平方差公式:(a+b)(a-b)= .

(3)常用等價(jià)變形:

,

,

.

型】單選題
結(jié)束】
10

【題目】已知a,b,c分別是ABC的三邊長(zhǎng),且滿足2a4+2b4+c4=2a2c2+2b2c2ABC( )

A. 等腰三角形 B. 等腰直角三角形

C. 直角三角形 D. 等腰三角形或直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(1,0),B(1﹣a,0),C(1+a,0)(a>0),點(diǎn)P在以D(4,4)為圓心,1為半徑的圓上運(yùn)動(dòng),且始終滿足∠BPC=90°,則a的最大值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各式:;②;③;④;⑤;⑥;⑦;⑧中方程有________,一元一次方程有________(只填序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P∠AOB內(nèi)任意一點(diǎn),OP=5cm,點(diǎn)M和點(diǎn)N分別是射線OA和射線OB上的動(dòng)點(diǎn),△PMN周長(zhǎng)的最小值是5cm,則∠AOB的度數(shù)是( 。

A. 25° B. 30° C. 35° D. 40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(背景)如圖(a),ABCADE均是頂角為40°的等腰三角形,BC,DE分別是底邊,求證:BD=CE.

(探究)如圖(b),ACBDCE均為等邊三角形,點(diǎn)A,D,E在同一直線上,連接BE.

①∠AEB的度數(shù)為________;②線段BEAD之間的數(shù)量關(guān)系是________.

(拓展)如圖(c),ACBDCE均為等腰直角三角形,∠ACB=DCE=90°,點(diǎn)A,D,E在同一直線上,CMDCEDE邊上的高,連接BE.

①求∠AEB的度數(shù);

②請(qǐng)直接寫出線段CM,AE,BE之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】莫小貝在圖1中畫出△ABC,其頂點(diǎn)A,B,C都是格點(diǎn)同時(shí)構(gòu)造正方形BDEF,使它的頂點(diǎn)都在格點(diǎn)上且它的邊DE,EF分別經(jīng)過點(diǎn)C,A,她借助此圖求出了△ABC 的面積.

(1)莫小貝所畫的△ABC 的三邊長(zhǎng)分別是AB=_______,BC=______,AC=______;△ABC 的面積為________.

(2)已知△ABC ,AB=,BC=,AC=請(qǐng)你根據(jù)莫小貝的思路,在圖2中畫出△ABC并直接寫出△ABC的面積_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:

(1)9x-5=2x+23;

(2)2x+3(2x-1)=16-(x+1);

(3)

(4) [ (x-)-8]=x+1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖,在數(shù)軸上有一小木棒AB,若平移木棒,使B落在A處,則A′所表示的數(shù)為 -1,若將A落在B處時(shí),則B′所表示的數(shù)14,它的兩個(gè)端點(diǎn)A、B所表示的數(shù)分別是 、 .

(2)老師給東東出了一道關(guān)于年齡的數(shù)學(xué)題:我像你那么小時(shí),你才兩歲;你像我那么大時(shí),我已經(jīng)44歲了,你猜我有多少歲?親愛的同學(xué),你能不能利用上一題的方法幫助小東求出老師的年齡呢?

查看答案和解析>>

同步練習(xí)冊(cè)答案