對(duì)于鈍角α,定義它的三角函數(shù)值如下:
sinα=sin(180°-α),cosα=-cos(180°-α)
(1)求sin120°,cos120°,sin150°的值;
(2)若一個(gè)三角形的三個(gè)內(nèi)角的比是1:1:4,A,B是這個(gè)三角形的兩個(gè)頂點(diǎn),sinA,cosB是方程4x2-mx-1=0的兩個(gè)不相等的實(shí)數(shù)根,求m的值及∠A和∠B的大小.
【答案】分析:(1)按照題目所給的信息求解即可;
(2)分三種情況進(jìn)行分析:①當(dāng)∠A=30°,∠B=120°時(shí);②當(dāng)∠A=120°,∠B=30°時(shí);③當(dāng)∠A=30°,∠B=30°時(shí),根據(jù)題意分別求出m的值即可.
解答:解:(1)由題意得,
sin120°=sin(180°-120°)=sin60°=,
cos120°=-cos(180°-120°)=-cos60°=-,
sin150°=sin(180°-150°)=sin30°=;

(2)∵三角形的三個(gè)內(nèi)角的比是1:1:4,
∴三個(gè)內(nèi)角分別為30°,30°,120°,
①當(dāng)∠A=30°,∠B=120°時(shí),方程的兩根為,-
代入方程得:4×(2-m×-1=0,
解得:m=0,
經(jīng)檢驗(yàn)-是方程4x2-1=0的根,
∴m=0符合題意;
②當(dāng)∠A=120°,∠B=30°時(shí),兩根為,,不符合題意;
③當(dāng)∠A=30°,∠B=30°時(shí),兩根為,,
代入方程得:4×(2-m×-1=0,
解得:m=0,
經(jīng)檢驗(yàn)不是方程4x2-1=0的根.
綜上所述:m=0,∠A=30°,∠B=120°.
點(diǎn)評(píng):本題考查了特殊角的三角函數(shù)值,解答本題的關(guān)鍵是按照題目所給的運(yùn)算法則求出三角函數(shù)的值和運(yùn)用分類討論的思想解題,難度一般.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•大慶)對(duì)于鈍角α,定義它的三角函數(shù)值如下:
sinα=sin(180°-α),cosα=-cos(180°-α)
(1)求sin120°,cos120°,sin150°的值;
(2)若一個(gè)三角形的三個(gè)內(nèi)角的比是1:1:4,A,B是這個(gè)三角形的兩個(gè)頂點(diǎn),sinA,cosB是方程4x2-mx-1=0的兩個(gè)不相等的實(shí)數(shù)根,求m的值及∠A和∠B的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(黑龍江大慶卷)數(shù)學(xué)(解析版) 題型:解答題

對(duì)于鈍角α,定義它的三角函數(shù)值如下:

sinα=sin(180°﹣α),cosα=﹣cos(180°﹣α)

(1)求sin120°,cos120°,sin150°的值;

(2)若一個(gè)三角形的三個(gè)內(nèi)角的比是1:1:4,A,B是這個(gè)三角形的兩個(gè)頂點(diǎn),sinA,cosB是方程4x2﹣mx﹣1=0的兩個(gè)不相等的實(shí)數(shù)根,求m的值及∠A和∠B的大。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

對(duì)于鈍角α,定義它的三角函數(shù)值如下:
sinα=sin(180°-α),cosα=-cos(180°-α)
(1)求sin120°,cos120°,sin150°的值;
(2)若一個(gè)三角形的三個(gè)內(nèi)角的比是1:1:4,A,B是這個(gè)三角形的兩個(gè)頂點(diǎn),sinA,cosB是方程4x2-mx-1=0的兩個(gè)不相等的實(shí)數(shù)根,求m的值及∠A和∠B的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:大慶 題型:解答題

對(duì)于鈍角α,定義它的三角函數(shù)值如下:
sinα=sin(180°-α),cosα=-cos(180°-α)
(1)求sin120°,cos120°,sin150°的值;
(2)若一個(gè)三角形的三個(gè)內(nèi)角的比是1:1:4,A,B是這個(gè)三角形的兩個(gè)頂點(diǎn),sinA,cosB是方程4x2-mx-1=0的兩個(gè)不相等的實(shí)數(shù)根,求m的值及∠A和∠B的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案