【題目】(1)如圖1,正方形ABCD中,點E,F分別在邊BC,CD上,∠EAF=45°,延長CD到點G,使DG=BE,連結EF,AG。求證:①∠BEA =∠G,② EF=FG。
(2)如圖2,等腰直角三角形ABC中,∠BAC=90°,AB=AC,點M,N在邊BC上,且∠MAN=45°,若BM=1,CN=3,求MN的長。
【答案】(1)①見解析②見解析(2)
【解析】
(1)在△ABE和△ADG中,根據SAS得出△ABE≌△ADG則∠BEA=∠G.然后在△FAE和△GAF中通過SAS證明得出△FAE≌△GAF,則EF=FG.
(2)過點C作CE⊥BC,垂足為點C,截取CE,使CE=BM.連接AE、EN.在△ABM和△ACE中,通過SAS證明得出△ABM≌△ACE, AM=AE, ∠BAM+∠CAN=45°. 在△MAN和△EAN中,通過SAS證明得出△MAN≌△EAN, MN=EN. Rt△ENC中,由勾股定理,得EN2=EC2+NC2得出最終結果.
(1)證明:在正方形ABCD中,∠ABE=∠ADG,AD=AB,
在△ABE和△ADG中,,
∴△ABE≌△ADG(SAS),∠BEA=∠G
∴∠BAE=∠DAG,AE=AG,
又∠BAD=90°,
∴∠EAG=90°,∠FAG=45°
在△FAE和△GAF中,,
∴△FAE≌△GAF(SAS),
∴EF=FG
(2)
解:如圖,過點C作CE⊥BC,垂足為點C,截取CE,使CE=BM.連接AE、EN.
∵AB=AC,∠BAC=90°,
∴∠B=∠ACB=45°.
∵CE⊥BC,
∴∠ACE=∠B=45°.
在△ABM和△ACE中,,
∴△ABM≌△ACE(SAS).
∴AM=AE,∠BAM=∠CAE.
∵∠BAC=90°,∠MAN=45°,
∴∠BAM+∠CAN=45°.
于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.
在△MAN和△EAN中,,
∴△MAN≌△EAN(SAS).
∴MN=EN.
在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.
∴MN2=BM2+NC2.
∵BM=1,CN=3,
∴MN2=12+32,
∴MN=.
科目:初中數學 來源: 題型:
【題目】為弘揚中華傳統(tǒng)文化,百年書院-----“安陽書院”近期舉辦了中小學生“國學經典大賽”.比賽項目為:A.唐詩;B.宋詞;C.論語;D.三字經.比賽形式分“單人組”和“雙人組”.
(1)小紅和小明組成一個小組參加“雙人組”比賽,比賽規(guī)則是:同一小組的兩名隊員的比賽項目不能相同,且每人只能隨機抽取一次,則小紅和小明一個抽中“唐詩”一個抽中“宋詞”的概率是多少? (請用“畫樹狀圖”或“列表”等方法寫出分析過程)
(2)九年級一班班委會有2名男生和若干名女生,班級準備選派2名班委會成員參加學校舉辦的詩詞比賽,若選派一名男生和一名女生的概率為,則班委會女生有 人.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,BC=4,過對角線BD的中點O的直線分別交AB、CD于點E、F,連接DE,BF.
(1)求證:四邊形BEDF是平行四邊形;
(2)當四邊形BEDF是菱形時,求EF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,A和B兩個小機器人,自甲處同時出發(fā)相背而行,繞直徑為整數米的圓周上運動,15分鐘內相遇7次,如果A的速度每分鐘增加6米,則A和B在15分鐘內相遇9次,問圓周直徑至多是多少米?至少是多少米?(取π=3.14)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有理數a,b,c在數軸上的位置如圖所示,請根據圖中信息,回答下列問題:
(1)a,b,c三個數中,為正數的數是 ,為負數的數是 ;
(2)將|a|,|b|,|c|三個數用不等號“<”連接起來是 ;
(3)化簡:|b﹣a|﹣|b+c|.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在學校組織的“學習強國”知識競賽中,每班參加比賽的人數相同,成績分為,,,四個等級其中相應等級的得分依次記為分,分,分和分.年級組長張老師將班和班的成績進行整理并繪制成如下的統(tǒng)計圖:
(1)在本次競賽中,班級的人數有多少。
(2)請你將下面的表格補充完整:
成績 班級 | 平均數(分) | 中位數 (分) | 眾數 (分) | B級及以上人數 |
班 | ||||
班 |
(3)結合以上統(tǒng)計量,請你從不同角度對這次競賽成績的結果進行分析(寫出兩條)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有20筐白菜,以每筐25千克為標準,超過或不足的千克數分別用正、負數來表示,記錄如下:
(1)20筐白菜中,最重的一筐比最輕的一筐多重多少千克?
(2)與標準重量比較,20筐白菜總計超過或不足多少千克?
(3)若白菜每千克售價2.8元,則出售這20筐白菜可賣多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知A(3,m),B(﹣2,﹣3)是直線AB和某反比例函數的圖象的兩個交點.
(1)求直線AB和反比例函數的解析式;
(2)觀察圖象,直接寫出當x滿足什么范圍時,直線AB在雙曲線的下方;
(3)反比例函數的圖象上是否存在點C,使得△OBC的面積等于△OAB的面積?如果不存在,說明理由;如果存在,求出滿足條件的所有點C的坐標.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com