如圖,AB是⊙O的直徑,P為AB延長(zhǎng)線(xiàn)上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作⊙O的切線(xiàn),切點(diǎn)為C,連接AC,BC,作∠APC的平分線(xiàn)交AC于點(diǎn)D.
下列結(jié)論正確的是    (寫(xiě)出所有正確結(jié)論的序號(hào))
①△CPD∽△DPA;
②若∠A=30°,則PC=BC;
③若∠CPA=30°,則PB=OB;
④無(wú)論點(diǎn)P在A(yíng)B延長(zhǎng)線(xiàn)上的位置如何變化,∠CDP為定值.
②③④.

試題分析:①只有一組對(duì)應(yīng)邊相等,所以錯(cuò)誤;
②根據(jù)切線(xiàn)的性質(zhì)可得∠PCB=∠A=30°,在直角三角形ABC中∠ABC=60°得出OB=BC,∠BPC=30°,解直角三角形可得PB=OC=BC;所以正確;
③根據(jù)切線(xiàn)的性質(zhì)和三角形的外角的性質(zhì)即可求得∠A=∠PCB=30°,∠ABC=60°,進(jìn)而求得PB=BC=OB;所以正確;
④連接OC,根據(jù)題意,可知OC⊥PC,∠CPD+∠DPA+∠A+∠ACO=90°,可推出∠DPA+∠A=45°,即∠CDP=45°,所以正確;.
故答案是②③④.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,AB是⊙O的直徑,點(diǎn)C在A(yíng)B的延長(zhǎng)線(xiàn)上,AB=4,BC=2,P是⊙O上半部分的一個(gè)動(dòng)點(diǎn),連接OP,CP.
(1)求△OPC的最大面積;
(2)求∠OCP的最大度數(shù);
(3)如圖2,延長(zhǎng)PO交⊙O于點(diǎn)D,連接DB,當(dāng)CP=DB時(shí),求證:CP是⊙O的切線(xiàn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在Rt△ABC中,AC=8,AB=10,DE是中位線(xiàn), 則圓心在直線(xiàn)AC上,且與DE、AB都相切的⊙O的半徑長(zhǎng)是          

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖所示,MN為⊙0的弦,∠M=40°,∠MON則等于( 。
A.40°B.60°C.100°D.120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在⊙O中,半徑為5,∠AOB=60°,則弦長(zhǎng)AB=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在以原點(diǎn)為圓心,2為半徑的⊙O上有一點(diǎn)C,∠COA=45°,則C的坐標(biāo)為( 。
A.(
2
2
B.(
2
,-
2
C.(-
2
,
2
D.(-
2
,-
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,O是△ABC的外接圓的圓心,∠ABC=60°,BF,CE分別是AC,AB邊上的高且交于點(diǎn)H,CE交⊙O于M,D,G分別在邊BC,AB上,且BD=BH,BG=BO,下列結(jié)論:①∠ABO=∠HBC;②A(yíng)B•BC=2BF•BH;③BM=BD;④△GBD為等邊三角形,其中正確結(jié)論的序號(hào)是( )
A.①②B.①③④C.①②④D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若扇形的圓心角為60°,弧長(zhǎng)為2π,則扇形的半徑為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在紙上剪下一個(gè)圓形和一個(gè)扇形的紙片,使之恰好能?chē)梢粋(gè)圓錐模型,若圓的半徑為r,扇形的半徑為R,扇形的圓心角等于90°,則r與R之間的關(guān)系是r=______.

查看答案和解析>>

同步練習(xí)冊(cè)答案