【題目】P是三角形ABC內(nèi)一點(diǎn),射線PDAC,射線PEAB

1)當(dāng)點(diǎn)D,E分別在ABBC上時(shí),

補(bǔ)全圖1

猜想∠DPE與∠A的數(shù)量關(guān)系,并證明;

2)當(dāng)點(diǎn)D,E都在線段BC上時(shí),你在(1)中所得結(jié)論是否仍然成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.

【答案】1補(bǔ)全圖形,如圖所示.見(jiàn)解析;DPE+A180°,證明見(jiàn)解析;(2)不成立,此時(shí)∠DPE=∠A.理由見(jiàn)解析.

【解析】

1)根據(jù)平行線的性質(zhì),即可得到∠A=∠BDP,∠DPE+BDP180°,即可得到∠DPE與∠A的數(shù)量關(guān)系.

2)先反向延長(zhǎng)射線PDAB于點(diǎn)D1,可知∠DPE+D1PE180°,由(1)結(jié)論可知∠D1PE+A180°,進(jìn)而得出∠DPE=∠A

1)①補(bǔ)全圖形,如圖1所示.

②∠DPE+A180°

證明:∵PDAC,

∴∠A=∠BDP

PEAB,

∴∠DPE+BDP180°,

∴∠DPE+A180°

2)不成立,此時(shí)∠DPE=∠A

理由如下:如圖2,反向延長(zhǎng)射線PDAB于點(diǎn)D1,可知∠DPE+D1PE180°

由(1)結(jié)論可知∠D1PE+A180°

∴∠DPE=∠A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一輛客車從甲地開(kāi)往乙地,一輛轎車從乙地開(kāi)往甲地,兩車同時(shí)出發(fā),兩車行駛x小時(shí)后,記客車離甲地的距離y1千米,轎車離甲地的距離y2千米,y1、y2關(guān)于x的函數(shù)圖象如圖所示:

①根據(jù)圖象直接寫(xiě)出y1y2關(guān)于x的函數(shù)關(guān)系式;

②當(dāng)兩車相遇時(shí),求此時(shí)客車行駛的時(shí)間.

③相遇后,兩車相距200千米時(shí),求客車又行駛的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】其工廠甲.乙兩個(gè)部門(mén)各有員工人,為了解這兩個(gè)部門(mén)員工的生產(chǎn)技能情況,進(jìn)行了抽樣調(diào)查,過(guò)程如下,請(qǐng)補(bǔ)充完整.

收集數(shù)據(jù)

從甲、乙兩個(gè)部門(mén)各隨機(jī)抽取名員工進(jìn)行了生產(chǎn)技能測(cè)試,測(cè)試成績(jī)(百分制)如下:

甲:78 86 74 81 75 76 87 70 75 90

75 79 81 70 74 80 86 69 83 77

乙:93 73 88 81 72 81 94 83 77 83

80 81 70 81 73 78 82 80 70 40

整理、描述數(shù)據(jù)

1)按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):

成績(jī)?nèi)藬?shù)部門(mén)

(說(shuō)明:成績(jī)分及以上為生產(chǎn)技能優(yōu)秀,分為生產(chǎn)技能良好,分為生產(chǎn)技能合格,分以下為生產(chǎn)技能不合格)

2)若按照甲部門(mén)的樣本數(shù)據(jù),在列頻數(shù)分布表時(shí),若取組距為,則這小組的頻數(shù)為    ,頻率為    ;

3)若按照乙部門(mén)的樣本數(shù)據(jù)畫(huà)出扇形統(tǒng)計(jì)圖,則表示生產(chǎn)技能優(yōu)秀部分的圓心角是    度;

得出結(jié)論:

4)估計(jì)乙部門(mén)生產(chǎn)技能優(yōu)秀的員工人數(shù)為    

5)可以推斷出部門(mén)員工的生產(chǎn)技能水平較高,你的理由為    (說(shuō)出一條即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖(1),在正方形一邊上取中點(diǎn),并沿虛線剪開(kāi),用兩塊圖形拼一拼,能否拼出平行四邊形、梯形或三角形?畫(huà)圖解釋你的判斷.

2)如圖(2E為正方形ABCDBC的中點(diǎn),FDC的中點(diǎn),BFAE有何關(guān)系?請(qǐng)解釋你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與坐標(biāo)軸交于, , 三點(diǎn),其中點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,連接, .動(dòng)點(diǎn)從點(diǎn)出發(fā),在線段上以每秒個(gè)單位長(zhǎng)度的速度向點(diǎn)作勻速運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)從點(diǎn)出發(fā),在線段上以每秒個(gè)單位長(zhǎng)度的速度向點(diǎn)作勻速運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒.連接

)填空: __________, __________

)在點(diǎn) 運(yùn)動(dòng)過(guò)程中, 可能是直角三角形嗎?請(qǐng)說(shuō)明理由.

)在軸下方,該二次函數(shù)的圖象上是否存在點(diǎn),使是以點(diǎn)為直角頂點(diǎn)的等腰直角三角形?若存在,請(qǐng)求出運(yùn)動(dòng)時(shí)間;若不存在,請(qǐng)說(shuō)明理由.

)如圖②,點(diǎn)的坐標(biāo)為,線段的中點(diǎn)為,連接,當(dāng)點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)恰好落在線段上時(shí),請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD中,以BF為底向正方形外側(cè)作等腰直角三角形BEF,連接DF,取DF的中點(diǎn)G,連接EG,CG.

(1)如圖1,當(dāng)點(diǎn)A與點(diǎn)F重合時(shí),猜想EGCG的數(shù)量關(guān)系為   ,EGCG的位置關(guān)系為   ,請(qǐng)證明你的結(jié)論.

(2)如圖2,當(dāng)點(diǎn)FAB上(不與點(diǎn)A重合)時(shí),(1)中結(jié)論是否仍然成立?請(qǐng)說(shuō)明理由;如圖3,點(diǎn)FAB的左側(cè)時(shí),(1)中的結(jié)論是否仍然成立?直接做出判斷,不必說(shuō)明理由.

(3)在圖2中,若BC=4BF=3,連接EC,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知DE∥BC,∠3=∠B,∠1+∠2=180°.下面是王寧同學(xué)的思考過(guò)程,請(qǐng)你在括號(hào)內(nèi)填上理由、依據(jù)或內(nèi)容。

思考過(guò)程

因?yàn)?/span> DE∥BC(已知)

所以∠3=∠EHC

因?yàn)?/span>∠3=∠B(已知)

所以∠B=∠EHC

所以 AB∥EH

∠2+ =180°

因?yàn)?/span>∠1=∠4

所以∠1+∠2=180°(等量代換)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一副三角尺按圖①所示的方式疊放在一起,現(xiàn)將含45°角的三角尺ADE固定不動(dòng),把含30°角的三角尺ABC繞頂點(diǎn)A順時(shí)針旋轉(zhuǎn)角α(α=∠BADα180°),使兩塊三角尺至少有一組邊平行.

(1)如圖②,當(dāng)α________°時(shí),BCDE.

(2)請(qǐng)你分別在圖③,④中,各畫(huà)一種符合要求的圖形,標(biāo)出α,并完成下列各題.

圖③中,當(dāng)α________°時(shí),________________;

圖④中,當(dāng)α________°時(shí),________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在平面直角坐標(biāo)系中,拋物線x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,且對(duì)稱軸為x=2,點(diǎn)P0t)是y軸上的一個(gè)動(dòng)點(diǎn).

1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo).

2)如圖1,當(dāng)0≤t≤4時(shí),設(shè)PAD的面積為S,求出St之間的函數(shù)關(guān)系式;S是否有最小值?如果有,求出S的最小值和此時(shí)t的值.

3)如圖2,當(dāng)點(diǎn)P運(yùn)動(dòng)到使PDA=90°時(shí),RtADPRtAOC是否相似?若相似,求出點(diǎn)P的坐標(biāo);若不相似,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案