如圖,點C是半圓O的半徑OB上的動點,作PC⊥AB于C.點D是半圓上位于PC左側(cè)的點,連接BD交線段PC于E,且PD=PE.
(1)求證:PD是⊙O的切線;
(2)若⊙O的半徑為,PC=,設OC=x,PD2=y.
①求y關于x的函數(shù)關系式;
②當時,求tanB的值.

【答案】分析:(1)要證PD是⊙O的切線只要證明∠PDO=90°即可;
(2)①分別用含有x,y的式子,表示OP2和PD2這樣便可得到y(tǒng)關于x的函數(shù)關系式;
②已知x的值,則可以根據(jù)關系式求得PD的值,已PC的值且PD=PE,從而可得到EC,BE的值,這樣便可求得tanB的值.
解答:(1)證明:連接OD.
∵OB=OD,∴∠OBD=∠ODB.                
∵PD=PE,∴∠PDE=∠PED.                
∠PDO=∠PDE+∠ODE
=∠PED+∠OBD
=∠BEC+∠OBD
=90°,
∴PD⊥OD.                            
∴PD是⊙O的切線.                       

(2)解:①連接OP.
在Rt△POC中,
OP2=OC2+PC2=x2+192.                    
在Rt△PDO中,
PD2=OP2-OD2=x2+144.
∴y=x2+144(0≤x≤).             
(x取值范圍不寫不扣分)
②當x=時,y=147,
∴PD=,(8分)
∴EC=,
∵CB=,
∴在Rt△ECB中,tanB===
點評:此題考查了學生對切線的判定及綜合解直角三角形的能力.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,點C是半圓O的半徑OB上的動點,作PC⊥AB于C.點D是半圓上位于PC左側(cè)的點,連接BD交線精英家教網(wǎng)段PC于E,且PD=PE.
(1)求證:PD是⊙O的切線;
(2)若⊙O的半徑為4
3
,PC=8
3
,設OC=x,PD2=y.
①求y關于x的函數(shù)關系式;
②當x=
3
時,求tanB的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,點P是半圓O的直徑BA延長線上的動點(不與點A重合),以PO為直徑的半圓C與半圓O交于點D,∠DPB的平分線與半圓C交于點E,過E作EF⊥AB于點F,EG∥PB交PD于點G,連接GA.
(1)求證:PD是半圓O的切線;
(2)若EF=
14
AB,當GA與半圓O相切時,求tan∠POE的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,點A是半圓上的一個三等分點,點B是弧AN的中點,點P是直徑MN上一個動點,圓O的半徑為1,
(1)找出當AP+BP能得到最小值時,點P的位置,并證明
(2)求出AP+BP最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(本小題滿分7分)如圖,點A是半圓上的一個三等分點,點B是弧AN的中點,點P是直徑MN上一個動點,圓O的半徑為1,
【小題1】(1)找出當AP+BP能得到最小值時,點P的位置,并證明
【小題2】(2)求出AP+BP最小值

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012年北京市第六十六中學九年級上學期期中考試數(shù)學卷 題型:解答題

(本小題滿分7分)如圖,點A是半圓上的一個三等分點,點B是弧AN的中點,點P是直徑MN上一個動點,圓O的半徑為1,
【小題1】(1)找出當AP+BP能得到最小值時,點P的位置,并證明
【小題2】(2)求出AP+BP最小值

查看答案和解析>>

同步練習冊答案