相關(guān)習(xí)題
 0  126496  126504  126510  126514  126520  126522  126526  126532  126534  126540  126546  126550  126552  126556  126562  126564  126570  126574  126576  126580  126582  126586  126588  126590  126591  126592  126594  126595  126596  126598  126600  126604  126606  126610  126612  126616  126622  126624  126630  126634  126636  126640  126646  126652  126654  126660  126664  126666  126672  126676  126682  126690  366461 

科目: 來源:第34章《二次函數(shù)》中考題集(31):34.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,拋物線與x軸交于A(x1,0),B(x2,0)兩點,且x1>x2,與y軸交于點C(0,4),其中x1,x2是方程x2-2x-8=0的兩個根.
(1)求這條拋物線的解析式;
(2)點P是線段AB上的動點,過點P作PE∥AC,交BC于點E,連接CP,當(dāng)△CPE的面積最大時,求點P的坐標(biāo);
(3)探究:若點Q是拋物線對稱軸上的點,是否存在這樣的點Q,使△QBC成為等腰三角形?若存在,請直接寫出所有符合條件的點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第34章《二次函數(shù)》中考題集(31):34.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,已知經(jīng)過原點的拋物線y=-2x2+4x與x軸的另一交點為A,現(xiàn)將它向右平移m(m>0)個單位,所得拋物線與x軸交于C、D兩點,與原拋物線交于點P.
(1)求點A的坐標(biāo),并判斷△PCA存在時它的形狀(不要求說理);
(2)在x軸上是否存在兩條相等的線段?若存在,請一一找出,并寫出它們的長度(可用含m的式子表示);若不存在,請說明理由;
(3)設(shè)△CDP的面積為S,求S關(guān)于m的關(guān)系式.

查看答案和解析>>

科目: 來源:第34章《二次函數(shù)》中考題集(31):34.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,拋物線y=ax2+bx+1與x軸交于兩點A(-1,0),B(1,0),與y軸交于點C.
(1)求拋物線的解析式;
(2)過點B作BD∥CA拋物線交于點D,求四邊形ACBD的面積;
(3)在x軸下方的拋物線上是否存在點M,過M作MN⊥x軸于點N,使以A、M、N為頂點的三角形與△BCD相似?若存在,則求出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第34章《二次函數(shù)》中考題集(31):34.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,平面直角坐標(biāo)系中,點A、B、C在x軸上,點D、E在y軸上,OA=OD=2,OC=OE=4,DB⊥DC,直線AD與經(jīng)過B、E、C三點的拋物線交于F、G兩點,與其對稱軸交于M.點P為線段FG上一個動點(與F、G不重合),PQ∥y軸與拋物線交于點Q.
(1)求經(jīng)過B、E、C三點的拋物線的解析式;
(2)是否存在點P,使得以P、Q、M為頂點的三角形與△AOD相似?若存在,求出滿足條件的點P的坐標(biāo);若不存在,請說明理由;
(3)若拋物線的頂點為N,連接QN,探究四邊形PMNQ的形狀:①能否成為菱形;②能否成為等腰梯形?若能,請直接寫出點P的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目: 來源:第34章《二次函數(shù)》中考題集(31):34.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,已知拋物線y=-x2+x+4交x軸的正半軸于點A,交y軸于點B.
(1)求A、B兩點的坐標(biāo),并求直線AB的解析式;
(2)設(shè)P(x,y)(x>0)是直線y=x上的一點,Q是OP的中點(O是原點),以PQ為對角線作正方形PEQF,若正方形PEQF與直線AB有公共點,求x的取值范圍;
(3)在(2)的條件下,記正方形PEQF與△OAB公共部分的面積為S,求S關(guān)于x的函數(shù)解析式,并探究S的最大值.

查看答案和解析>>

科目: 來源:第34章《二次函數(shù)》中考題集(31):34.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,頂點為(4,-1)的拋物線交y軸于A點,交x軸于B,C兩點(點B在點C的左側(cè)),已知A點坐標(biāo)為(0,3).
(1)求此拋物線的解析式
(2)過點B作線段AB的垂線交拋物線于點D,如果以點C為圓心的圓與直線BD相切,請判斷拋物線的對稱軸l與⊙C有怎樣的位置關(guān)系,并給出證明;
(3)已知點P是拋物線上的一個動點,且位于A,C兩點之間,問:當(dāng)點P運動到什么位置時,△PAC的面積最大?并求出此時P點的坐標(biāo)和△PAC的最大面積.

查看答案和解析>>

科目: 來源:第34章《二次函數(shù)》中考題集(31):34.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖所示,拋物線y=-x2+2x+3與x軸交于A、B兩點,直線BD的函數(shù)表達(dá)式為,拋物線的對稱軸l與直線BD交于點C、與x軸交于點E.
(1)求A、B、C三個點的坐標(biāo);
(2)點P為線段AB上的一個動點(與點A、點B不重合),以點A為圓心、以AP為半徑的圓弧與線段AC交于點M,以點B為圓心、以BP為半徑的圓弧與線段BC交于點N,分別連接AN、BM、MN.
①求證:AN=BM;
②在點P運動的過程中,四邊形AMNB的面積有最大值還是有最小值?并求出該最大值或最小值.

查看答案和解析>>

科目: 來源:第34章《二次函數(shù)》中考題集(31):34.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

矩形OBCD在如圖所示的平面直角坐標(biāo)系中,其中三個頂點分別是O(0,0),B(0,3),D(-2,0),直線AB交x軸于點A(1,0).
(1)求直線AB的解析式;
(2)求過A、B、C三點的拋物線的解析式,并寫出其頂點E的坐標(biāo);
(3)過點E作x軸的平行線EF交AB于點F,將直線AB沿x軸向右平移2個單位,與x軸交于點G,與EF交于點H,請問過A、B、C三點的拋物線上是否存在點P,使得S△PAG=S△PEH?若存在,求點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第34章《二次函數(shù)》中考題集(31):34.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

已知拋物線y=x2+bx+c與直線y=x+1有兩個交點A、B.
(1)當(dāng)AB的中點落在y軸時,求c的取值范圍;
(2)當(dāng)AB=2,求c的最小值,并寫出c取最小值時拋物線的解析式;
(3)設(shè)點P(t,T)在AB之間的一段拋物線上運動,S(t)表示△PAB的面積.
①當(dāng)AB=2,且拋物線與直線的一個交點在y軸時,求S(t)的最大值,以及此時點P的坐標(biāo);
②當(dāng)AB=m(正常數(shù))時,S(t)是否仍有最大值,若存在,求出S(t)的最大值以及此時點P的坐標(biāo)(t,T)滿足的關(guān)系,若不存在說明理由.

查看答案和解析>>

科目: 來源:第34章《二次函數(shù)》中考題集(31):34.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

已知拋物線y=ax2+bx+c(a≠0)頂點為C(1,1)且過原點O.過拋物線上一點P(x,y)向直線作垂線,垂足為M,連FM(如圖).
(1)求字母a,b,c的值;
(2)在直線x=1上有一點,求以PM為底邊的等腰三角形PFM的P點的坐標(biāo),并證明此時△PFM為正三角形;
(3)對拋物線上任意一點P,是否總存在一點N(1,t),使PM=PN恒成立?若存在請求出t值,若不存在請說明理由.

查看答案和解析>>

同步練習(xí)冊答案