相關(guān)習(xí)題
 0  127507  127515  127521  127525  127531  127533  127537  127543  127545  127551  127557  127561  127563  127567  127573  127575  127581  127585  127587  127591  127593  127597  127599  127601  127602  127603  127605  127606  127607  127609  127611  127615  127617  127621  127623  127627  127633  127635  127641  127645  127647  127651  127657  127663  127665  127671  127675  127677  127683  127687  127693  127701  366461 

科目: 來源:第6章《二次函數(shù)》中考題集(36):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

已知關(guān)于x的一元二次方程2x2+4x+k-1=0有實數(shù)根,k為正整數(shù).
(1)求k的值;
(2)當(dāng)此方程有兩個非零的整數(shù)根時,將關(guān)于x的二次函數(shù)y=2x2+4x+k-1的圖象向下平移8個單位,求平移后的圖象的解析式;
(3)在(2)的條件下,將平移后的二次函數(shù)的圖象在x軸下方的部分沿x軸翻折,圖象的其余部分保持不變,得到一個新的圖象.請你結(jié)合這個新的圖象回答:當(dāng)直線y=x+b(b<k)與此圖象有兩個公共點時,b的取值范圍.

查看答案和解析>>

科目: 來源:第6章《二次函數(shù)》中考題集(36):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

在平行四邊形ABCD中,過點C作CE⊥CD交AD于點E,將線段EC繞點E逆時針旋轉(zhuǎn)90°得到線段EF(如圖1)
(1)在圖1中畫圖探究:
①當(dāng)P為射線CD上任意一點(P1不與C重合)時,連接EP1;繞點E逆時針旋轉(zhuǎn)90°得到線段EG1.判斷直線FG1與直線CD的位置關(guān)系,并加以證明;
②當(dāng)P2為線段DC的延長線上任意一點時,連接EP2,將線段EP2繞點E逆時針旋轉(zhuǎn)90°得到線段EG2.判斷直線G1G2與直線CD的位置關(guān)系,畫出圖形并直接寫出你的結(jié)論.
(2)若AD=6,tanB=,AE=1,在①的條件下,設(shè)CP1=x,S△P1FG1=y,求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

查看答案和解析>>

科目: 來源:第6章《二次函數(shù)》中考題集(36):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,已知拋物線與x交于A(-1,0)、E(3,0)兩點,與y軸交于點B(0,3).
(1)求拋物線的解析式;
(2)設(shè)拋物線頂點為D,求四邊形AEDB的面積;
(3)△AOB與△DBE是否相似?如果相似,請給以證明;如果不相似,請說明理由.

查看答案和解析>>

科目: 來源:第6章《二次函數(shù)》中考題集(36):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖(1)所示,一張平行四邊形紙片ABCD,AB=10,AD=6,BD=8,沿對角線BD把這張紙片剪成△AB1D1和△CB2D2兩個三角形(如圖(2)所示),將△AB1D1沿直線AB1方向移動(點B2始終在AB1上,AB1與CD2始終保持平行),當(dāng)點A與B2重合時停止平移,在平移過程中,AD1與B2D2交于點E,B2C與B1D1交于點F,
(1)當(dāng)△AB1D1平移到圖(3)的位置時,試判斷四邊形B2FD1E是什么四邊形?并證明你的結(jié)論;
(2)設(shè)平移距離B2B1為x,四邊形B2FD1E的面積為y,求y與x的函數(shù)關(guān)系式;并求出四邊形B2FD1E的面積的最大值;
(3)連接B1C(請在圖(3)中畫出).當(dāng)平移距離B2B1的值是多少時,△B1B2F與△B1CF相似?

查看答案和解析>>

科目: 來源:第6章《二次函數(shù)》中考題集(36):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

拋物線y=ax2+bx+c(a≠0)的頂點為M,與x軸的交點為A、B(點B在點A的右側(cè)),△ABM的三個內(nèi)角∠M、∠A、∠B所對的邊分別為m、a、b.若關(guān)于x的一元二次方程(m-a)x2+2bx+(m+a)=0有兩個相等的實數(shù)根.
(1)判斷△ABM的形狀,并說明理由.
(2)當(dāng)頂點M的坐標(biāo)為(-2,-1)時,求拋物線的解析式,并畫出該拋物線的大致圖形.
(3)若平行于x軸的直線與拋物線交于C、D兩點,以CD為直徑的圓恰好與x軸相切,求該圓的圓心坐標(biāo).

查看答案和解析>>

科目: 來源:第6章《二次函數(shù)》中考題集(36):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

一條拋物線經(jīng)過原點O與A(4,0)點,頂點B在直線y=kx+2k(k≠0)上.將這條拋物線先向上平移m(m>0)個單位,再向右平移m個單位,得到的拋物線的頂點B′仍然在直線y=kx+2k上,點A移動到了點A′.
(1)求k值及原拋物線的表達(dá)式;
(2)求使△A′OB′的面積是6032的m值.

查看答案和解析>>

科目: 來源:第6章《二次函數(shù)》中考題集(36):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,已知點A的坐標(biāo)是(-1,0),點B的坐標(biāo)是(9,0),以AB為直徑作⊙O′,交y軸的負(fù)半軸于點C,連接AC,BC,過A,B,C三點作拋物線.
(1)求拋物線的解析式;
(2)點E是AC延長線上一點,∠BCE的平分線CD交⊙O′于點D,連接BD,求直線BD的解析式;
(3)在(2)的條件下,拋物線上是否存在點P,使得∠PDB=∠CBD?如果存在,請求出點P的坐標(biāo);如果不存在,請說明理由.
第三問改成,在(2)的條件下,點P是直線BC下方的拋物線上一動點,當(dāng)點P運(yùn)動到什么位置時,△PCD的面積是△BCD面積的三分之一,求此時點P的坐標(biāo).

查看答案和解析>>

科目: 來源:第6章《二次函數(shù)》中考題集(36):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

已知:如圖,拋物線y=ax2-2ax+c(a≠0)與y軸交于點C(0,4),與x軸交于點A、B,點A的坐標(biāo)為(4,0).
(1)求該拋物線的解析式;
(2)點Q是線段AB上的動點,過點Q作QE∥AC,交BC于點E,連接CQ.當(dāng)△CQE的面積最大時,求點Q的坐標(biāo);
(3)若平行于x軸的動直線l與該拋物線交于點P,與直線AC交于點F,點D的坐標(biāo)為(2,0).問:是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第6章《二次函數(shù)》中考題集(36):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,在直角坐標(biāo)系xOy中,點P為函數(shù)y=x2在第一象限內(nèi)的圖象上的任一點,點A的坐標(biāo)為(0,1),直線l過B(0,-1)且與x軸平行,過P作y軸的平行線分別交x軸,l于C,Q,連接AQ交x軸于H,直線PH交y軸于R.
(1)求證:H點為線段AQ的中點;
(2)求證:①四邊形APQR為平行四邊形;②平行四邊形APQR為菱形;
(3)除P點外,直線PH與拋物線y=x2有無其它公共點并說明理由.

查看答案和解析>>

科目: 來源:第6章《二次函數(shù)》中考題集(36):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

已知點A(a,y1)、B(2a,y2)、C(3a,y3)都在拋物線y=5x2+12x上.
(1)求拋物線與x軸的交點坐標(biāo);
(2)當(dāng)a=1時,求△ABC的面積;
(3)是否存在含有y1,y2,y3,且與a無關(guān)的等式?如果存在,試給出一個,并加以證明;如果不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案