相關習題
 0  140168  140176  140182  140186  140192  140194  140198  140204  140206  140212  140218  140222  140224  140228  140234  140236  140242  140246  140248  140252  140254  140258  140260  140262  140263  140264  140266  140267  140268  140270  140272  140276  140278  140282  140284  140288  140294  140296  140302  140306  140308  140312  140318  140324  140326  140332  140336  140338  140344  140348  140354  140362  366461 

科目: 來源:第2章《二次函數(shù)》中考題集(27):2.8 二次函數(shù)的應用(解析版) 題型:解答題

如圖,現(xiàn)有一橫截面是一拋物線的水渠.一次,水渠管理員將一根長1.5m的標桿一端放在水渠底部的A點,另一端露出水面并靠在水渠邊緣的B點,發(fā)現(xiàn)標桿有1m浸沒在水中,露出水面部分的標桿與水面成30°的夾角(標桿與拋物線的橫截面在同一平面內).
(1)以水面所在直線為x軸,建立如圖所示的直角坐標系,求該水渠橫截面拋物線的解析式(結果保留根號);
(2)在(1)的條件下,求當水面再上升0.3m時的水面寬約為多少(取2.2,結果精確到0.1m).

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(27):2.8 二次函數(shù)的應用(解析版) 題型:解答題

某地計劃開鑿一條單向行駛(從正中通過)的隧道,其截面是拋物線拱形ACB,而且能通過最寬3米,最高3.5米的廂式貨車.按規(guī)定,機動車通過隧道時車身距隧道壁的水平距離和鉛直距離最小都是0.5米.為設計這條能使上述廂式貨車恰好安全通過的隧道,在圖紙上以直線AB為x軸,線段AB的垂直平分線為y軸,建立如圖所示的直角坐標系,求拋物線拱形的表達式、隧道的跨度AB和拱高OC.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(27):2.8 二次函數(shù)的應用(解析版) 題型:解答題

司機在駕駛汽車時,發(fā)現(xiàn)緊急情況到踩下剎車需要一段時間,這段時間叫反應時間.之后還會繼續(xù)行駛一段距離.我們把司機從發(fā)現(xiàn)緊急情況到汽車停止所行駛的這段距離叫“剎車距離”(如圖).
已知汽車的剎車距離s(單位:m)與車速v(單位:m/s)之同有如下關系:s=tv+kv2其中t為司機的反應時間(單位:s),k為制動系數(shù).某機構為測試司機飲酒后剎車距離的變化,對某種型號的汽車進行了“醉漢”駕車測試,已知該型號汽車的制動系數(shù)k=0.08,并測得志愿者在未飲酒時的反應時間t=0.7s
(1)若志愿者未飲酒,且車速為11m/s,則該汽車的剎車距離為多少m(精確到0.1m);
(2)當志愿者在喝下一瓶啤酒半小時后,以17m/s的速度駕車行駛,測得剎車距離為46m.假如該志愿者當初是以11m/s的車速行駛,則剎車距離將比未飲酒時增加多少?(精確到0.1m)
(3)假如你以后駕駛該型號的汽車以11m/s至17m/s的速度行駛,且與前方車輛的車距保持在40m至50m之間.若發(fā)現(xiàn)前方車輛突然停止,為防止“追尾”.則你的反應時間應不超過多少秒?(精確到0.01s)

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(27):2.8 二次函數(shù)的應用(解析版) 題型:解答題

市“健益”超市購進一批20元/千克的綠色食品,如果以30元/千克銷售,那么每天可售出400千克.由銷售經(jīng)驗知,每天銷售量y(千克)與銷售單價x(元)(x≥30)存在如下圖所示的一次函數(shù)關系.
(1)試求出y與x的函數(shù)關系式;
(2)設“健益”超市銷售該綠色食品每天獲得利潤為P元,當銷售單價為何值時,每天可獲得最大利潤?最大利潤是多少?
(3)根據(jù)市場調查,該綠色食品每天可獲利潤不超過4480元,現(xiàn)該超市經(jīng)理要求每天利潤不得低于4180元,請你幫助該超市確定綠色食品銷售單價x的范圍(直接寫出).

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(27):2.8 二次函數(shù)的應用(解析版) 題型:解答題

某企業(yè)信息部進行市場調研發(fā)現(xiàn):
信息一:如果單獨投資A種產(chǎn)品,則所獲利潤yA(萬元)與投資金額x(萬元)之間存在正比例函數(shù)關系:yA=kx,并且當投資5萬元時,可獲利潤2萬元;
信息二:如果單獨投資B種產(chǎn)品,則所獲利潤yB(萬元)與投資金額x(萬元)之間存在二次函數(shù)關系:yB=ax2+bx,并且當投資2萬元時,可獲利潤2.4萬元;當投資4萬元,可獲利潤3.2萬元.
(1)請分別求出上述的正比例函數(shù)表達式與二次函數(shù)表達式;
(2)如果企業(yè)同時對A、B兩種產(chǎn)品共投資10萬元,請你設計一個能獲得最大利潤的投資方案,并求出按此方案能獲得的最大利潤是多少?

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(27):2.8 二次函數(shù)的應用(解析版) 題型:解答題

工藝商場按標價銷售某種工藝品時,每件可獲利45元;按標價的八五折銷售該工藝品8件與將標價降低35元銷售該工藝品12件所獲利潤相等.
(1)該工藝品每件的進價、標價分別是多少元?
(2)若每件工藝品按(1)中求得的進價進貨,標價售出,工藝商場每天可售出該工藝品100件.若每件工藝品降價1元,則每天可多售出該工藝品4件.問每件工藝品降價多少元出售,每天獲得的利潤最大?獲得的最大利潤是多少元?

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(27):2.8 二次函數(shù)的應用(解析版) 題型:解答題

王師傅有兩塊板材邊角料,其中一塊是邊長為60cm的正方形板子;另一塊是上底為30cm,下底為120cm,高為60cm的直角梯形板子(如圖①).王師傅想將這兩塊板子裁成兩塊全等的矩形板材.他將兩塊板子疊放在一起,使梯形的兩個直角頂點分別與正方形的兩個頂點重合,兩塊板子的重疊部分為五邊形ABCFE圍成的區(qū)域(如圖②).由于受材料紋理的限制,要求裁出的矩形要以點B為一個頂點.
(1)求FC的長;
(2)利用圖②求出矩形頂點B所對的頂點到BC邊的距離x(cm)為多少時,矩形的面積y(cm2)最大?最大面積是多少?
(3)若想使裁出的矩形為正方形,試求出面積最大的正方形的邊長.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(27):2.8 二次函數(shù)的應用(解析版) 題型:解答題

某校課間操出操時樓梯口常出現(xiàn)擁擠現(xiàn)象,為詳細了解情況,九(1)班數(shù)學課題學習小組在樓梯口對前10分鐘出入人數(shù)進行了觀察記錄,并根據(jù)得到的數(shù)據(jù)繪制成下面兩幅圖:
(1)在2至5分鐘時,每分鐘出樓梯口的人數(shù)p(人)與時間t(分)的關系可以看作一次函數(shù),請你求出它的表達式.
(2)若把每分鐘到達樓梯口的人數(shù)y(人)與時間t(分)(2≤t≤8)的關系近似的看作二次函數(shù)y=-t2+12t+49,問第幾分鐘時到達樓梯口的人數(shù)最多?最多人數(shù)是多少?
(3)調查發(fā)現(xiàn),當樓梯口每分鐘增加的滯留人數(shù)達到24人時,就會出現(xiàn)安全隱患.請你根據(jù)以上有關部門信息分析是否存在安全隱患.若存在,求出存在隱患的時間段.若不存在,請說明理由.(每分鐘增加的滯留人數(shù)=每分鐘到達樓梯口的人數(shù)-每分鐘出樓梯樓的人數(shù))
(4)根據(jù)你分析的結果,對學校提一個合理化建議.(字數(shù)在40個以內)

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(27):2.8 二次函數(shù)的應用(解析版) 題型:解答題

在2006年青島嶗山北宅櫻桃節(jié)前夕,某果品批發(fā)公司為指導今年的櫻桃銷售,對往年的市場銷售情況進行了調查統(tǒng)計,得到如下數(shù)據(jù):
銷售價 x(元/千克)25242322
銷售量 y(千克)2000250030003500
(1)在如圖的直角坐標系內,作出各組有序數(shù)對(x,y)所對應的點.連接各點并觀察所得的圖形,判斷y與x之間的函數(shù)關系,并求出y與x之間的函數(shù)關系式;
(2)若櫻桃進價為13元/千克,試求銷售利潤P(元)與銷售價x(元/千克)之間的函數(shù)關系式,并求出當x取何值時,P的值最大.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(27):2.8 二次函數(shù)的應用(解析版) 題型:解答題

寧波市土地利用現(xiàn)狀通過國土資源部驗收,我市在節(jié)約集約用地方面已走在全國前列.1996---2004年,市區(qū)建設用地總量從33萬畝增加到48萬畝,相應的年GDP從295億元增加到985億.寧波市區(qū)年GDP y(億元)與建設用地總量x(萬畝)之間存在著如圖所示的一次函數(shù)關系.
(1)求y關于x的函數(shù)關系式.
(2)據(jù)調查2005年市區(qū)建設用地比2004年增加4萬畝,如果這些土地按以上函數(shù)關系式開發(fā)使用,那么2005年市區(qū)可以新增GDP多少億元?
(3)按以上函數(shù)關系式,我市年GDP每增加1億元,需增建設用地多少萬畝?(精確到0.001萬畝).

查看答案和解析>>

同步練習冊答案