相關(guān)習(xí)題
 0  140372  140380  140386  140390  140396  140398  140402  140408  140410  140416  140422  140426  140428  140432  140438  140440  140446  140450  140452  140456  140458  140462  140464  140466  140467  140468  140470  140471  140472  140474  140476  140480  140482  140486  140488  140492  140498  140500  140506  140510  140512  140516  140522  140528  140530  140536  140540  140542  140548  140552  140558  140566  366461 

科目: 來源:第1章《解直角三角形》中考題集(20):1.4 解直角三角形(解析版) 題型:解答題

在△ABC中,∠A、∠B、∠C所對(duì)的邊分別用a、b、c表示.
(1)如圖,在△ABC中,∠A=2∠B,且∠A=60度.求證:a2=b(b+c).

(2)如果一個(gè)三角形的一個(gè)內(nèi)角等于另一個(gè)內(nèi)角的2倍,我們稱這樣的三角形為“倍角三角形”.第一問中的三角形是一個(gè)特殊的倍角三角形,那么對(duì)于任意的倍角三角形ABC,其中∠A=2∠B,關(guān)系式a2=b(b+c)是否仍然成立?并證明你的結(jié)論.

(3)試求出一個(gè)倍角三角形的三條邊的長,使這三條邊長恰為三個(gè)連續(xù)的正整數(shù).

查看答案和解析>>

科目: 來源:第1章《解直角三角形》中考題集(20):1.4 解直角三角形(解析版) 題型:解答題

已知平行四邊形ABCD中,對(duì)角線AC和BD相交于點(diǎn)O,AC=10,BD=8.
(1)若AC⊥BD,試求四邊形ABCD的面積;
(2)若AC與BD的夾角∠AOD=60°,求四邊形ABCD的面積;
(3)試討論:若把題目中“平行四邊形ABCD”改為“四邊形ABCD”,且∠AOD=θ,AC=a,BD=b,試求四邊形ABCD的面積(用含θ,a,b的代數(shù)式表示).

查看答案和解析>>

科目: 來源:第1章《解直角三角形》中考題集(20):1.4 解直角三角形(解析版) 題型:解答題

已知平行四邊形ABCD,AD=a,AB=b,∠ABC=α.點(diǎn)F為線段BC上一點(diǎn)(端點(diǎn)B,C除外),連接AF,AC,連接DF,并延長DF交AB的延長線于點(diǎn)E,連接CE.
(1)當(dāng)F為BC的中點(diǎn)時(shí),求證:△EFC與△ABF的面積相等;
(2)當(dāng)F為BC上任意一點(diǎn)時(shí),△EFC與△ABF的面積還相等嗎?說明理由.

查看答案和解析>>

科目: 來源:第1章《解直角三角形》中考題集(21):1.4 解直角三角形(解析版) 題型:解答題

在邊長為6的菱形ABCD中,動(dòng)點(diǎn)M從點(diǎn)A出發(fā),沿A?B?C向終點(diǎn)C運(yùn)動(dòng),連接DM交AC于點(diǎn)N.

(1)如圖1,當(dāng)點(diǎn)M在AB邊上時(shí),連接BN:
①求證:△ABN≌△ADN;
②若∠ABC=60°,AM=4,∠ABN=α,求點(diǎn)M到AD的距離及tanα的值.
(2)如圖2,若∠ABC=90°,記點(diǎn)M運(yùn)動(dòng)所經(jīng)過的路程為x(6≤x≤12).試問:x為何值時(shí),△ADN為等腰三角形.

查看答案和解析>>

科目: 來源:第1章《解直角三角形》中考題集(21):1.4 解直角三角形(解析版) 題型:解答題

學(xué)校植物園沿路護(hù)欄紋飾部分設(shè)計(jì)成若干個(gè)全等菱形圖案,每增加一個(gè)菱形圖案,紋飾長度就增加dcm,如圖所示.已知每個(gè)菱形圖案的邊長cm,其一個(gè)內(nèi)角為60度.
(1)若d=26,則該紋飾要231個(gè)菱形圖案,求紋飾的長度L;
(2)當(dāng)d=20時(shí),若保持(1)中紋飾長度不變,則需要多少個(gè)這樣的菱形圖案?

查看答案和解析>>

科目: 來源:第1章《解直角三角形》中考題集(21):1.4 解直角三角形(解析版) 題型:解答題

如圖,菱形ABCD的邊長為2,BD=2,E、F分別是邊AD,CD上的兩個(gè)動(dòng)點(diǎn),且滿足AE+CF=2.
(1)求證:△BDE≌△BCF;
(2)判斷△BEF的形狀,并說明理由;
(3)設(shè)△BEF的面積為S,求S的取值范圍.

查看答案和解析>>

科目: 來源:第1章《解直角三角形》中考題集(21):1.4 解直角三角形(解析版) 題型:解答題

如圖,在△ABC中,D、E分別是AB、AC的中點(diǎn),BE=2DE,延長DE到點(diǎn)F,使得EF=BE,連接CF.
(1)求證:四邊形BCEF是菱形;
(2)若CE=4,∠BCF=130°,求菱形BCEF的面積.(結(jié)果保留三個(gè)有效數(shù)字)

查看答案和解析>>

科目: 來源:第1章《解直角三角形》中考題集(21):1.4 解直角三角形(解析版) 題型:解答題

如圖,在梯形ABCD中,AB∥DC,過對(duì)角線AC的中點(diǎn)O作EF⊥AC,分別交邊AB、CD于點(diǎn)E、F,連接CE、AF.
(1)求證:四邊形AECF是菱形;
(2)若EF=4,tan∠OAE=,求四邊形AECF的面積.

查看答案和解析>>

科目: 來源:第1章《解直角三角形》中考題集(21):1.4 解直角三角形(解析版) 題型:解答題

已知:如圖,在平行四邊形ABCD中,E是AD的中點(diǎn),連接BE、CE,∠BEC=90°.
(1)求證:BE平分∠ABC;
(2)若EC=4,且,求四邊形ABCE的面積.

查看答案和解析>>

科目: 來源:第1章《解直角三角形》中考題集(21):1.4 解直角三角形(解析版) 題型:解答題

如圖,在矩形ABCD中,E是BC邊上的點(diǎn),AE=BC,DF⊥AE,垂足為F,連接DE.
(1)求證:△ABE≌△DFA;
(2)如果AD=10,AB=6,求sin∠EDF的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案