相關(guān)習(xí)題
 0  145741  145749  145755  145759  145765  145767  145771  145777  145779  145785  145791  145795  145797  145801  145807  145809  145815  145819  145821  145825  145827  145831  145833  145835  145836  145837  145839  145840  145841  145843  145845  145849  145851  145855  145857  145861  145867  145869  145875  145879  145881  145885  145891  145897  145899  145905  145909  145911  145917  145921  145927  145935  366461 

科目: 來源:第2章《二次函數(shù)》中考題集(30):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

已知:直角梯形OABC的四個(gè)頂點(diǎn)是O(0,0),A(,1),B(s,t),C(,0),拋物線y=x2+mx-m的頂點(diǎn)P是直角梯形OABC內(nèi)部或邊上的一個(gè)動(dòng)點(diǎn),m為常數(shù).
(1)求s與t的值,并在直角坐標(biāo)系中畫出直角梯形OABC;
(2)當(dāng)拋物線y=x2+mx-m與直角梯形OABC的邊AB相交時(shí),求m的取值范圍.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(30):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系xoy中,等腰梯形OABC的下底邊OA在x軸的正半軸上,BC∥OA,OC=AB.tan∠BA0=,點(diǎn)B的坐標(biāo)為(7,4).
(1)求點(diǎn)A、C的坐標(biāo);
(2)求經(jīng)過點(diǎn)0、B、C的拋物線的解析式;
(3)在第一象限內(nèi)(2)中的拋物線上是否存在一點(diǎn)P,使得經(jīng)過點(diǎn)P且與等腰梯形一腰平行的直線將該梯形分成面積相等的兩部分?若存在,請求出點(diǎn)P的橫坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(30):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,拋物線y=ax2+bx-3與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),且經(jīng)過點(diǎn)(2,-3a),對稱軸是直線x=1,頂點(diǎn)是M.
(1)求拋物線對應(yīng)的函數(shù)表達(dá)式;
(2)經(jīng)過C,M兩點(diǎn)作直線與x軸交于點(diǎn)N,在拋物線上是否存在這樣的點(diǎn)P,使以點(diǎn)P,A,C,N為頂點(diǎn)的四邊形為平行四邊形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)設(shè)直線y=-x+3與y軸的交點(diǎn)是D,在線段BD上任取一點(diǎn)E(不與B,D重合),經(jīng)過A,B,E三點(diǎn)的圓交直線BC于點(diǎn)F,試判斷△AEF的形狀,并說明理由;
(4)當(dāng)E是直線y=-x+3上任意一點(diǎn)時(shí),(3)中的結(jié)論是否成立(請直接寫出結(jié)論).

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(30):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

已知拋物線y=x2+kx-k2(k為常數(shù),且k>0).
(1)證明:此拋物線與x軸總有兩個(gè)交點(diǎn);
(2)設(shè)拋物線與x軸交于M、N兩點(diǎn),若這兩點(diǎn)到原點(diǎn)的距離分別為OM、ON,且,求k的值.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(30):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

在直角坐標(biāo)系xoy中,拋物線y=x2+bx+c與x軸交于兩點(diǎn)A、B,與y軸交于點(diǎn)C,其中A在B的左側(cè),B的坐標(biāo)是(3,0).將直線y=kx沿y軸向上平移3個(gè)單位長度后恰好經(jīng)過點(diǎn)B、C.
(1)求k的值;
(2)求直線BC和拋物線的解析式;
(3)求△ABC的面積;
(4)設(shè)拋物線頂點(diǎn)為D,點(diǎn)P在拋物線的對稱軸上,且∠APD=∠ACB,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(30):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

已知二次函數(shù)y=x2-x+c.
(1)若點(diǎn)A(-1,n)、B(2,2n-1)在二次函數(shù)y=x2-x+c的圖象上,求此二次函數(shù)的最小值;
(2)若點(diǎn)D(x1,y1)、E(x2,y2)、P(m,m)(m>0)在二次函數(shù)y=x2-x+c的圖象上,且D、E兩點(diǎn)關(guān)于坐標(biāo)原點(diǎn)成中心對稱,連接OP.當(dāng)2≤OP≤2+時(shí),試判斷直線DE與拋物線y=x2-x+c+的交點(diǎn)個(gè)數(shù),并說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(30):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

已知OABC是一張矩形紙片,AB=6.
(1)如圖1,在AB上取一點(diǎn)M,使得△CBM與△CB′M關(guān)于CM所在直線對稱,點(diǎn)B′恰好在邊OA上,且△OB′C的面積為24cm2,求BC的長;
(2)如圖2.以O(shè)為原點(diǎn),OA、OC所在直線分別為x軸、y軸建立平面直角坐標(biāo)系.求對稱軸CM所在直線的函數(shù)關(guān)系式;
(3)作B′G∥AB交CM于點(diǎn)G,若拋物線y=x2+m過點(diǎn)G,求這條拋物線所對應(yīng)的函數(shù)關(guān)系式.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(30):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,拋物線y=ax2+bx-4a經(jīng)過A(-1,0)、C(0,4)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求拋物線的解析式;
(2)已知點(diǎn)D(m,m+1)在第一象限的拋物線上,求點(diǎn)D關(guān)于直線BC對稱的點(diǎn)的坐標(biāo);
(3)在(2)的條件下,連接BD,點(diǎn)P為拋物線上一點(diǎn),且∠DBP=45°,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(31):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中放置一直角三角板,其頂點(diǎn)為A(-1,0),B(0,),O(0,0),將此三角板繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,得到△A′B′O.
(1)如圖,一拋物線經(jīng)過點(diǎn)A,B,B′,求該拋物線解析式;
(2)設(shè)點(diǎn)P是在第一象限內(nèi)拋物線上一動(dòng)點(diǎn),求使四邊形PBAB′的面積達(dá)到最大時(shí)點(diǎn)P的坐標(biāo)及面積的最大值.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(31):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,在矩形OABC中,已知A、C兩點(diǎn)的坐標(biāo)分別為A(4,0)、C(0,2),D為OA的中點(diǎn).設(shè)點(diǎn)P是∠AOC平分線上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)O重合).
(1)試證明:無論點(diǎn)P運(yùn)動(dòng)到何處,PC總與PD相等;
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到與點(diǎn)B的距離最小時(shí),試確定過O、P、D三點(diǎn)的拋物線的解析式;
(3)設(shè)點(diǎn)E是(2)中所確定拋物線的頂點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到何處時(shí),△PDE的周長最?求出此時(shí)點(diǎn)P的坐標(biāo)和△PDE的周長;
(4)設(shè)點(diǎn)N是矩形OABC的對稱中心,是否存在點(diǎn)P,使∠CPN=90°?若存在,請直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案