相關習題
 0  145744  145752  145758  145762  145768  145770  145774  145780  145782  145788  145794  145798  145800  145804  145810  145812  145818  145822  145824  145828  145830  145834  145836  145838  145839  145840  145842  145843  145844  145846  145848  145852  145854  145858  145860  145864  145870  145872  145878  145882  145884  145888  145894  145900  145902  145908  145912  145914  145920  145924  145930  145938  366461 

科目: 來源:第2章《二次函數(shù)》中考題集(29):2.4 二次函數(shù)的應用(解析版) 題型:解答題

如圖,平面直角坐標系中有一直角梯形OMNH,點H的坐標為(-8,0),點N的坐標為(-6,-4).
(1)畫出直角梯形OMNH繞點O旋轉180°的圖形OABC,并寫出頂點A,B,C的坐標(點M的對應點為A,點N的對應點為B,點H的對應點為C);
(2)求出過A,B,C三點的拋物線的表達式;
(3)截取CE=OF=AD=m,且E,F(xiàn),D分別在線段CO,OA,AB上,求四邊形BEFD的面積S與m之間的函數(shù)關系式,并寫出自變量m的取值范圍;面積S是否存在最小值?若存在,請求出這個最小值;若不存在,請說明理由;
(4)在(3)的情況下,四邊形BEFD是否存在鄰邊相等的情況?若存在,請直接寫出此時m的值,并指出相等的鄰邊;若不存在,說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(29):2.4 二次函數(shù)的應用(解析版) 題型:解答題

如圖,拋物線F:y=ax2+bx+c(a>0)與y軸相交于點C,直線L1經(jīng)過點C且平行于x軸,將L1向上平移t個單位得到直線L2,設L1與拋物線F的交點為C、D,L2與拋物線F的交點為A、B,連接AC、BC.
(1)當,,c=1,t=2時,探究△ABC的形狀,并說明理由;
(2)若△ABC為直角三角形,求t的值(用含a的式子表示);
(3)在(2)的條件下,若點A關于y軸的對稱點A’恰好在拋物線F的對稱軸上,連接A’C,BD,求四邊形A’CDB的面積(用含a的式子表示)

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(29):2.4 二次函數(shù)的應用(解析版) 題型:解答題

如圖所示,對稱軸為x=3的拋物線y=ax2+2x與x軸相交于點B,O.
(1)求拋物線的解析式,并求出頂點A的坐標;
(2)連接AB,把AB所在的直線平移,使它經(jīng)過原點O,得到直線l.點P是l上一動點.設以點A、B、O、P為頂點的四邊形面積為S,點P的橫坐標為t,當0<S≤18時,求t的取值范圍;
(3)在(2)的條件下,當t取最大值時,拋物線上是否存在點Q,使△OPQ為直角三角形且OP為直角邊?若存在,直接寫出點Q的坐標;若不存在,說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(29):2.4 二次函數(shù)的應用(解析版) 題型:解答題

已知:如圖,拋物線y=ax2+bx+c與x軸相交于兩點A(1,0),B(3,0),與y軸相交于點C(0,3).
(1)求拋物線的函數(shù)關系式;
(2)若點D(,m)是拋物線y=ax2+bx+c上的一點,請求出m的值,并求出此時△ABD的面積.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(29):2.4 二次函數(shù)的應用(解析版) 題型:解答題

已知拋物線y=ax2+bx+c的頂點為A(3,-3),與x軸的一個交點為B(1,0).
(1)求拋物線的解析式.
(2)P是y軸上一個動點,求使P到A、B兩點的距離之和最小的點P的坐標.
(3)設拋物線與x軸的另一個交點為C.在拋物線上是否存在點M,使得△MBC的面積等于以點A、P、B、C為頂點的四邊形面積的三分之一?若存在,請求出所有符合條件的點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(29):2.4 二次函數(shù)的應用(解析版) 題型:解答題

在平面直角坐標系xOy中,拋物線y=ax2+bx+c與x軸交于A、B兩點(點A在點B的左側),與y軸交于點C,點A的坐標為(-3,0),若將經(jīng)過A、C兩點的直線y=kx+b沿y軸向下平移3個單位后恰好經(jīng)過原點,且拋物線的對稱軸是直線x=-2.
(1)求直線AC及拋物線的函數(shù)表達式;
(2)如果P是線段AC上一點,設△ABP、△BPC的面積分別為S△ABP、S△BPC,且S△ABP:S△BPC=2:3,求點P的坐標;
(3)設⊙Q的半徑為1,圓心Q在拋物線上運動,則在運動過程中是否存在⊙Q與坐標軸相切的情況?若存在,求出圓心Q的坐標;若不存在,請說明理由.并探究:若設⊙Q的半徑為r,圓心Q在拋物線上運動,則當r取何值時,⊙Q與兩坐軸同時相切.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(29):2.4 二次函數(shù)的應用(解析版) 題型:解答題

如圖(1),拋物線y=x2+x-4與y軸交于點A,E(0,b)為y軸上一動點,過點E的直線y=x+b與拋物線交于點B、C.
(1)求點A的坐標;
(2)當b=0時(如圖(2)),△ABE與△ACE的面積大小關系如何?當b>-4時,上述關系還成立嗎,為什么?
(3)是否存在這樣的b,使得△BOC是以BC為斜邊的直角三角形?若存在,求出b;若不存在,說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(29):2.4 二次函數(shù)的應用(解析版) 題型:解答題

如圖,已知拋物線y=x2+bx+c與x軸交于點A(-4,0)和B(1,0)兩點,與y軸交于C點.
(1)求此拋物線的解析式;
(2)設E是線段AB上的動點,作EF∥AC交BC于F,連接CE,當△CEF的面積是△BEF面積的2倍時,求E點的坐標;
(3)若P為拋物線上A、C兩點間的一個動點,過P作y軸的平行線,交AC于Q,當P點運動到什么位置時,線段PQ的值最大,并求此時P點的坐標.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(30):2.4 二次函數(shù)的應用(解析版) 題型:解答題

如圖,在平面直角坐標系中,矩形OABC的兩邊分別在x軸和y軸上,OA=cm,OC=8cm,現(xiàn)有兩動點P、Q分別從O、C同時出發(fā),P在線段OA上沿OA方向以每秒cm的速度勻速運動,Q在線段CO上沿CO方向以每秒1cm的速度勻速運動、設運動時間為t秒.
(1)用t的式子表示△OPQ的面積S;
(2)求證:四邊形OPBQ的面積是一個定值,并求出這個定值;
(3)當△OPQ與△PAB和△QPB相似時,拋物線y=x2+bx+c經(jīng)過B、P兩點,過線段BP上一動點M作y軸的平行線交拋物線于N,當線段MN的長取最大值時,求直線MN把四邊形OPBQ分成兩部分的面積之比.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(30):2.4 二次函數(shù)的應用(解析版) 題型:解答題

已知:二次函數(shù)y=ax2+bx-2的圖象經(jīng)過點(1,0),一次函數(shù)圖象經(jīng)過原點和點(1,-b),其中a>b>0且a、b為實數(shù).
(1)求一次函數(shù)的表達式(用含b的式子表示);
(2)試說明:這兩個函數(shù)的圖象交于不同的兩點;
(3)設(2)中的兩個交點的橫坐標分別為x1、x2,求|x1-x2|的范圍.

查看答案和解析>>

同步練習冊答案