相關(guān)習(xí)題
 0  146655  146663  146669  146673  146679  146681  146685  146691  146693  146699  146705  146709  146711  146715  146721  146723  146729  146733  146735  146739  146741  146745  146747  146749  146750  146751  146753  146754  146755  146757  146759  146763  146765  146769  146771  146775  146781  146783  146789  146793  146795  146799  146805  146811  146813  146819  146823  146825  146831  146835  146841  146849  366461 

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(38):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,直線y=2x-4與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,以x軸上點(diǎn)M為圓心,過A、B兩點(diǎn)作⊙M與x軸交于另一點(diǎn)C.
(1)求⊙M的半徑及圓心M的坐標(biāo);
(2)①求經(jīng)過A、B、C三點(diǎn)的拋物線的頂點(diǎn)D的坐標(biāo);
②求證:DB是⊙M的切線;
(3)若半徑為1的⊙P與x軸和直線BD都相切,請直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(38):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖①,Rt△ABC中,∠B=90°,∠CAB=30度.它的頂點(diǎn)A的坐標(biāo)為(10,0),頂點(diǎn)B的坐標(biāo)為,AB=10,點(diǎn)P從點(diǎn)A出發(fā),沿A→B→C的方向勻速運(yùn)動,同時(shí)點(diǎn)Q從點(diǎn)D(0,2)出發(fā),沿y軸正方向以相同速度運(yùn)動,當(dāng)點(diǎn)P到達(dá)點(diǎn)C時(shí),兩點(diǎn)同時(shí)停止運(yùn)動,設(shè)運(yùn)動的時(shí)間為t秒.
(1)求∠BAO的度數(shù).
(2)當(dāng)點(diǎn)P在AB上運(yùn)動時(shí),△OPQ的面積S(平方單位)與時(shí)間t(秒)之間的函數(shù)圖象為拋物線的一部分,(如圖②),求點(diǎn)P的運(yùn)動速度.
(3)求(2)中面積S與時(shí)間t之間的函數(shù)關(guān)系式及面積S取最大值時(shí)點(diǎn)P的坐標(biāo).
(4)如果點(diǎn)P,Q保持(2)中的速度不變,那么點(diǎn)P沿AB邊運(yùn)動時(shí),∠OPQ的大小隨著時(shí)間t的增大而增大;沿著BC邊運(yùn)動時(shí),∠OPQ的大小隨著時(shí)間t的增大而減小,當(dāng)點(diǎn)P沿這兩邊運(yùn)動時(shí),使∠OPQ=90°的點(diǎn)P有幾個?請說明理由.

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(38):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,在△OAB中,∠B=90°,∠BOA=30°,OA=4,將△OAB繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)至△OA′B′,C點(diǎn)的坐標(biāo)為(0,4).
(1)求A′點(diǎn)的坐標(biāo);
(2)求過C,A′,A三點(diǎn)的拋物線y=ax2+bx+c的解析式;
(3)在(2)中的拋物線上是否存在點(diǎn)P,使以O(shè),A,P為頂點(diǎn)的三角形是等腰直角三角形?若存在,求出所有點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(38):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,?ABCO的頂點(diǎn)O在原點(diǎn),點(diǎn)A的坐標(biāo)為(-2,0),點(diǎn)B的坐標(biāo)為(0,2),點(diǎn)C在第一象限.
(1)直接寫出點(diǎn)C的坐標(biāo);
(2)將?ABCO繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),使OC落在y軸的正半軸上,如圖②,得□DEFG(點(diǎn)D與點(diǎn)O重合).FG與邊AB、x軸分別交于點(diǎn)Q、點(diǎn)P.設(shè)此時(shí)旋轉(zhuǎn)前后兩個平行四邊形重疊部分的面積為S,求S的值;
(3)若將(2)中得到的?DEFG沿x軸正方向平移,在移動的過程中,設(shè)動點(diǎn)D的坐標(biāo)為(t,0),?DEFG與?ABCO重疊部分的面積為S.寫出S與t(0<t≤2)的函數(shù)關(guān)系式.(直接寫出結(jié)果)

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(38):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,⊙O1的直徑OA在x軸上,O1A=2,直線OB交⊙O1于點(diǎn)B,∠BOA=30°,P為經(jīng)過O、B、A三點(diǎn)的拋物線的頂點(diǎn).
(1)求點(diǎn)P的坐標(biāo);
(2)求證:PB是⊙O1的切線.

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(38):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,圓在正方形的內(nèi)部沿著正方形的四條邊運(yùn)動一周,并且始終保持與正方形的邊相切.
(1)在圖中,把圓運(yùn)動一周覆蓋正方形的區(qū)域用陰影表示出來;
(2)當(dāng)圓的直徑等于正方形的邊長一半時(shí),該圓運(yùn)動一周覆蓋正方形的區(qū)域的面積是否最大?并說明理由.

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(38):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

已知矩形ABCD中,AB=2,AD=4,以AB的垂直平分線為x軸,AB所在的直線為y軸,建立平面直角坐標(biāo)系(如圖).
(1)寫出A,B,C,D及AD的中點(diǎn)E的坐標(biāo);
(2)求以E為頂點(diǎn)、對稱軸平行于y軸,并且經(jīng)過點(diǎn)B,C的拋物線的解析式;
(3)求對角線BD與上述拋物線除點(diǎn)B以外的另一交點(diǎn)P的坐標(biāo);
(4)△PEB的面積S△PEB與△PBC的面積S△PBC具有怎樣的關(guān)系?證明你的結(jié)論.

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(38):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,正方形AOCB的邊長為1,點(diǎn)D在x軸的正半軸上,且OD=OB,BD交OC于點(diǎn)E.
(1)求∠BEC的度數(shù);
(2)求點(diǎn)E的坐標(biāo);
(3)求過B,O,D三點(diǎn)的拋物線的解析式.

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(38):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖1,在平面直角坐標(biāo)系中,拋物線與直線相交于A,B兩點(diǎn).
(1)求線段AB的長;
(2)若一個扇形的周長等于(1)中線段AB的長,當(dāng)扇形的半徑取何值時(shí),扇形的面積最大,最大面積是多少;
(3)如圖2,線段AB的垂直平分線分別交x軸、y軸于C,D兩點(diǎn),垂足為點(diǎn)M,分別求出OM,OC,OD的長,并驗(yàn)證等式是否成立;
(4)如圖3,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,設(shè)BC=a,AC=b,AB=c.CD=b,試說明:

查看答案和解析>>

科目: 來源:第23章《二次函數(shù)與反比例函數(shù)》中考題集(38):23.5 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,O為原點(diǎn),點(diǎn)A、C的坐標(biāo)分別為(2,0)、(1,).將△AOC繞AC的中點(diǎn)旋轉(zhuǎn)180°,點(diǎn)O落到點(diǎn)B的位置,拋物線y=ax2-2x經(jīng)過點(diǎn)A,點(diǎn)D是該拋物線的頂點(diǎn).
(1)求證:四邊形ABCO是平行四邊形;
(2)求a的值并說明點(diǎn)B在拋物線上;
(3)若點(diǎn)P是線段OA上一點(diǎn),且∠APD=∠OAB,求點(diǎn)P的坐標(biāo);
(4)若點(diǎn)P是x軸上一點(diǎn),以P、A、D為頂點(diǎn)作平行四邊形,該平行四邊形的另一頂點(diǎn)在y軸上,寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案