相關(guān)習(xí)題
 0  217343  217351  217357  217361  217367  217369  217373  217379  217381  217387  217393  217397  217399  217403  217409  217411  217417  217421  217423  217427  217429  217433  217435  217437  217438  217439  217441  217442  217443  217445  217447  217451  217453  217457  217459  217463  217469  217471  217477  217481  217483  217487  217493  217499  217501  217507  217511  217513  217519  217523  217529  217537  366461 

科目: 來源: 題型:解答題

如圖,拋物線y=ax2+bx+3與x軸相交于點A(﹣1,0)、B(3,0),與y軸相交于點C,點P為線段OB上的動點(不與O、B重合),過點P垂直于x軸的直線與拋物線及線段BC分別交于點E、F,點D在y軸正半軸上,OD=2,連接DE、OF.

(1)求拋物線的解析式;
(2)當(dāng)四邊形ODEF是平行四邊形時,求點P的坐標(biāo);
(3)過點A的直線將(2)中的平行四邊形ODEF分成面積相等的兩部分,求這條直線的解析式.(不必說明平分平行四邊形面積的理由)

查看答案和解析>>

科目: 來源: 題型:解答題

如圖1,已知拋物線y=ax2+bx(a≠0)經(jīng)過A(3,0)、B(4,4)兩點.

(1)求拋物線的解析式;
(2)將直線OB向下平移m個單位長度后,得到的直線與拋物線只有一個公共點D,求m的值及點D的坐標(biāo);
(3)如圖2,若點N在拋物線上,且∠NBO=∠ABO,則在(2)的條件下,求出所有滿足△POD∽△NOB的點P坐標(biāo)(點P、O、D分別與點N、O、B對應(yīng)).

查看答案和解析>>

科目: 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,A、B為x軸上兩點,C、D為y軸上的兩點,經(jīng)
過點A、C、B的拋物線的一部分C1與經(jīng)過點A、D、B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封
閉曲線稱為“蛋線”.已知點C的坐標(biāo)為(0,),點M是拋物線C2<0)的頂點.

(1)求A、B兩點的坐標(biāo);
(2)“蛋線”在第四象限上是否存在一點P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請說明理由;
(3)當(dāng)△BDM為直角三角形時,求的值.

查看答案和解析>>

科目: 來源: 題型:解答題

如圖,在直角坐標(biāo)系xOy中,二次函數(shù)y=x2+(2k﹣1)x+k+1的圖象與x軸相交于O、A兩點.

(1)求這個二次函數(shù)的解析式;
(2)在這條拋物線的對稱軸右邊的圖象上有一點B,使△AOB的面積等于6,求點B的坐標(biāo);
(3)對于(2)中的點B,在此拋物線上是否存在點P,使∠POB=90°?若存在,求出點P的坐標(biāo),并求出△POB的面積;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,直線與直線y=x交于點A,點B在直線上,∠BOA=90°.拋物線過點A,O,B,頂點為點E.

(1)求點A,B的坐標(biāo);
(2)求拋物線的函數(shù)表達(dá)式及頂點E的坐標(biāo);
(3)設(shè)直線y=x與拋物線的對稱軸交于點C,直線BC交拋物線于點D,過點E作FE∥x軸,交直線AB于點F,連接OD,CF,CF交x軸于點M.試判斷OD與CF是否平行,并說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

如圖,已知拋物線與x軸交于點A,B,AB=2,與y軸交于點C,對稱軸為直線x=2.

(1)求拋物線的函數(shù)表達(dá)式;
(2)設(shè)P為對稱軸上一動點,求△APC周長的最小值;
(3)設(shè)D為拋物線上一點,E為對稱軸上一點,若以點A,B,D,E為頂點的四邊形是菱形,則點D的坐標(biāo)為      

查看答案和解析>>

科目: 來源: 題型:解答題

如圖,在△ABC中,∠C=90°,BC=3,AB=5.點P從點B出發(fā),以每秒1個單位長度沿B→C→A→B的方向運動;點Q從點C出發(fā),以每秒2個單位沿C→A→B方向的運動,到達(dá)點B后立即原速返回,若P、Q兩點同時運動,相遇后同時停止,設(shè)運動時間為t秒.

(1)當(dāng)t=     時,點P與點Q相遇;
(2)在點P從點B到點C的運動過程中,當(dāng)ι為何值時,△PCQ為等腰三角形?
(3)在點Q從點B返回點A的運動過程中,設(shè)△PCQ的面積為s平方單位.
①求s與ι之間的函數(shù)關(guān)系式;
②當(dāng)s最大時,過點P作直線交AB于點D,將△ABC中沿直線PD折疊,使點A落在直線PC上,求折疊后的
△APD與△PCQ重疊部分的面積.

查看答案和解析>>

科目: 來源: 題型:解答題

如圖,拋物線與y軸交于點C(0,-4),與x軸交于點A,B,且B點的坐標(biāo)為(2,0)

(1)求該拋物線的解析式;
(2)若點P是AB上的一動點,過點P作PE∥AC,交BC于E,連接CP,求△PCE面積的最大值;
(3)若點D為OA的中點,點M是線段AC上一點,且△OMD為等腰三角形,求M點的坐標(biāo).

查看答案和解析>>

科目: 來源: 題型:解答題

如圖,已知直線與拋物線相交于A,B兩點,且點A(1,-4)為拋物線的頂點,點B在x軸上。

(1)求拋物線的解析式;
(2)在(1)中拋物線的第二象限圖象上是否存在一點P,使△POB與△POC全等?若存在,求出點P的坐標(biāo);若不存在,請說明理由;
(3)若點Q是y軸上一點,且△ABQ為直角三角形,求點Q的坐標(biāo)。

查看答案和解析>>

科目: 來源: 題型:解答題

如圖,直線與坐標(biāo)軸分別交于點A、B,與直線y=x交于點C.在線段OA上,動點Q以每秒1個單位長度的速度從點O出發(fā)向點A做勻速運動,同時動點P從點A出發(fā)向點O做勻速運動,當(dāng)點P、Q其中一點停止運動時,另一點也停止運動.分別過點P、Q作x軸的垂線,交直線AB、OC于點E、F,連接EF.若運動時間為t秒,在運動過程中四邊形PEFQ總為矩形(點P、Q重合除外).

(1)求點P運動的速度是多少?
(2)當(dāng)t為多少秒時,矩形PEFQ為正方形?
(3)當(dāng)t為多少秒時,矩形PEFQ的面積S最大?并求出最大值.

查看答案和解析>>

同步練習(xí)冊答案