相關(guān)習(xí)題
 0  357453  357461  357467  357471  357477  357479  357483  357489  357491  357497  357503  357507  357509  357513  357519  357521  357527  357531  357533  357537  357539  357543  357545  357547  357548  357549  357551  357552  357553  357555  357557  357561  357563  357567  357569  357573  357579  357581  357587  357591  357593  357597  357603  357609  357611  357617  357621  357623  357629  357633  357639  357647  366461 

科目: 來(lái)源: 題型:

【題目】如圖,DEABE,DFACF,若BDCD,BECF,則下列結(jié)論:①DEDF;②AD平分∠BAC;③AEAD;④ACAB2BE中正確的是_____

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】日零時(shí)起,高鐵開通,某旅行社為吸引廣大市民組團(tuán)去仙都旅游,推出了如下收費(fèi)標(biāo)準(zhǔn):如果人數(shù)不超過人,人均旅游費(fèi)用為元,如果人數(shù)超過人,每增加人,人均旅游費(fèi)用降低元,但人均旅游費(fèi)用不得低于元.

如果某單位組織人參加仙都旅游,那么需支付旅行社旅游費(fèi)用________元;

現(xiàn)某單位組織員工去仙都旅游,共支付給該旅行社旅游費(fèi)用元,那么該單位有多少名員工參加旅游?

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】某企業(yè)加工一臺(tái)大型機(jī)械設(shè)備潤(rùn)滑用油千克,用油的重復(fù)利用率為,按此計(jì)算,加工一臺(tái)大型機(jī)械設(shè)備的實(shí)際耗油量為千克.通過技術(shù)革新后,不僅降低了潤(rùn)滑用油量,同時(shí)也提高了用油的重復(fù)利用率,并且發(fā)現(xiàn)潤(rùn)滑用油量每減少千克,用油量的重復(fù)利用率增加,這樣加工一臺(tái)大型機(jī)械設(shè)備的實(shí)際耗油量下降到千克,問技術(shù)革新后,加工一臺(tái)大型機(jī)械設(shè)備潤(rùn)滑用油量是多少千克?用油的重復(fù)利用率是多少?

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】,是一元二次方程的兩根,則有,,由上式可知,一元二次方程的兩根和、兩根積是由方程的系數(shù)確定的,我們把這個(gè)關(guān)系稱為一元二次方程根與系數(shù)的關(guān)系.若,是方程的兩根,記,,…,,

________;________;________;________;(直接寫出結(jié)果)

當(dāng)為不小于的整數(shù)時(shí),由猜想,有何關(guān)系?

利用中猜想求的值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AC=6cm,BC=8cm,D、E、F分別是AC、BC、AB的中點(diǎn),連接DE.點(diǎn)P從點(diǎn)D出發(fā),沿DE方向勻速運(yùn)動(dòng);同時(shí),點(diǎn)Q從點(diǎn)E出發(fā),沿EB方向勻速運(yùn)動(dòng),兩者速度均為1cm/s;當(dāng)其中一點(diǎn)停止運(yùn)動(dòng)時(shí),另外一點(diǎn)也停止運(yùn)動(dòng).連接PQ、PF,設(shè)運(yùn)動(dòng)時(shí)間為ts(0<t<4).解答下列問題:

(1)當(dāng)t為何值時(shí),△EPQ為等腰三角形?

(2)如圖①,設(shè)四邊形PFBQ的面積為ycm2,求yt之間的函數(shù)關(guān)系式;

(3)當(dāng)t為何值時(shí),四邊形PFBQ的面積與△ABC的面積之比為2:5?

(4)如圖②,連接FQ,是否存在某一時(shí)刻,使得PFQF互相垂直?若存在,求出此時(shí)t的值;若不存,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】(操作發(fā)現(xiàn))

如圖①,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,△ABC的三個(gè)頂點(diǎn)均在格點(diǎn)上.

(1)請(qǐng)按要求畫圖:將△ABC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)90°,點(diǎn)B的對(duì)應(yīng)點(diǎn)為B′,點(diǎn)C的對(duì)應(yīng)點(diǎn)為C′,連接BB′

(2)在(1)所畫圖形中,∠AB′B=   

(問題解決)

如圖②,在等邊三角形ABC中,AC=,點(diǎn)P在△ABC內(nèi),且∠APC=90°,BPC=120°,求△APC的面積.

小明同學(xué)通過觀察、分析、思考,對(duì)上述問題形成了如下想法:

想法一:將△APC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)60°,得到△AP′B,連接PP′,尋找線段PA、PC之間的數(shù)量關(guān)系;

想法二:將△APB繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)60°,得到△AP′C′,連接PP′,尋找線段PA、PC之間的數(shù)量關(guān)系;

請(qǐng)參考小明同學(xué)的想法,完成該問題的解答過程.(求解一種方法即可)

(靈活運(yùn)用)

如圖③,在四邊形ABCD中,AEBC,垂足為E,BAE=ADC,BE=CE=2,CD=5,AD=kAB(k為常數(shù)),直接寫出BD的長(zhǎng)(用含k的式子表示).

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】某公司生產(chǎn)的某種時(shí)令商品每件成本為20元,經(jīng)過市場(chǎng)調(diào)研發(fā)現(xiàn),這種商品在未來(lái)40天內(nèi)的日銷售量m(件)與時(shí)間t(天)的關(guān)系滿足:m=﹣2t+96.且未來(lái)40天內(nèi),前20天每天的價(jià)格y1(元/件)與時(shí)間t(天)的函數(shù)關(guān)系式為y1=t+25(1≤t≤20t為整數(shù)),后20天每天的價(jià)格y2(元/件)與時(shí)間t(天)的函數(shù)關(guān)系式為y2=﹣t+40(21≤t<40t為整數(shù)).下面我們就來(lái)研究銷售這種商品的有關(guān)問題

(1)請(qǐng)分別寫出未來(lái)40天內(nèi),20天和后20天的日銷售利潤(rùn)w(元)與時(shí)間t的函數(shù)關(guān)系式;

(2)請(qǐng)預(yù)測(cè)未來(lái)40天中哪一天的日銷售利潤(rùn)最大,最大日銷售利潤(rùn)是多少?

(3)在實(shí)際銷售的前20天中,該公司決定每銷售一件商品就捐贈(zèng)a元利潤(rùn)(a<4)給希望工程.公司通過銷售記錄發(fā)現(xiàn),前20天中,每天扣除捐贈(zèng)后的日銷售利潤(rùn)隨時(shí)間t(天)的增大而增大,求a的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=6,BC=4,過對(duì)角線BD中點(diǎn)O的直線分別交AB、CD邊于點(diǎn)E、F.

(1)求證:四邊形BEDF是平行四邊形;

(2)求證:△ADE≌△CBF;

(3)當(dāng)四邊形BEDF是菱形時(shí),直接寫出線段EF的長(zhǎng).

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖所示,AB 兩點(diǎn)分別位于一個(gè)池塘的兩端,小明想用繩子測(cè)量AB 間的距離,但繩子不夠長(zhǎng),請(qǐng)你利用三角形全等的相關(guān)知識(shí)幫他設(shè)計(jì)一種方案測(cè)量出AB間的距離,寫出具體的方案,并解釋其中的道理,

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】環(huán)保局對(duì)某企業(yè)排污情況進(jìn)行檢測(cè),結(jié)果顯示:所排污水中硫化物的濃度超標(biāo),即硫化物的濃度超過最高允許的1.0 mg/L.環(huán)保局要求該企業(yè)立即整改,在15天以內(nèi)(含15天)排污達(dá)標(biāo).整改過程中,所排污水中硫化物的濃度y(mg/L)與時(shí)間x(天)的變化規(guī)律如圖所示,其中線段AB表示前3天的變化規(guī)律,其中第3天時(shí)硫化物的濃度降為4 mg/L.從第3天起所排污水中硫化物的濃度y與時(shí)間x滿足下面表格中的關(guān)系:

時(shí)間x(天)

3

4

5

6

8

……

硫化物的濃y(mg/L)

4

3

2.4

2

1.5

(1)求整改過程中當(dāng)0≤x<3時(shí),硫化物的濃度y與時(shí)間x的函數(shù)表達(dá)式;

(2)求整改過程中當(dāng)x≥3時(shí),硫化物的濃度y與時(shí)間x的函數(shù)表達(dá)式;

(3)該企業(yè)所排污水中硫化物的濃度,能否在15天以內(nèi)不超過最高允許的1.0 mg/L?為什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案