科目: 來(lái)源: 題型:
【題目】如圖,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF,則下列結(jié)論:①DE=DF;②AD平分∠BAC;③AE=AD;④AC﹣AB=2BE中正確的是_____.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】自年月日零時(shí)起,高鐵開通,某旅行社為吸引廣大市民組團(tuán)去仙都旅游,推出了如下收費(fèi)標(biāo)準(zhǔn):如果人數(shù)不超過人,人均旅游費(fèi)用為元,如果人數(shù)超過人,每增加人,人均旅游費(fèi)用降低元,但人均旅游費(fèi)用不得低于元.
如果某單位組織人參加仙都旅游,那么需支付旅行社旅游費(fèi)用________元;
現(xiàn)某單位組織員工去仙都旅游,共支付給該旅行社旅游費(fèi)用元,那么該單位有多少名員工參加旅游?
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某企業(yè)加工一臺(tái)大型機(jī)械設(shè)備潤(rùn)滑用油千克,用油的重復(fù)利用率為,按此計(jì)算,加工一臺(tái)大型機(jī)械設(shè)備的實(shí)際耗油量為千克.通過技術(shù)革新后,不僅降低了潤(rùn)滑用油量,同時(shí)也提高了用油的重復(fù)利用率,并且發(fā)現(xiàn)潤(rùn)滑用油量每減少千克,用油量的重復(fù)利用率增加,這樣加工一臺(tái)大型機(jī)械設(shè)備的實(shí)際耗油量下降到千克,問技術(shù)革新后,加工一臺(tái)大型機(jī)械設(shè)備潤(rùn)滑用油量是多少千克?用油的重復(fù)利用率是多少?
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】若,是一元二次方程的兩根,則有,,由上式可知,一元二次方程的兩根和、兩根積是由方程的系數(shù)確定的,我們把這個(gè)關(guān)系稱為一元二次方程根與系數(shù)的關(guān)系.若,是方程的兩根,記,,…,,
________;________;________;________;(直接寫出結(jié)果)
當(dāng)為不小于的整數(shù)時(shí),由猜想,,有何關(guān)系?
利用中猜想求的值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=6cm,BC=8cm,D、E、F分別是AC、BC、AB的中點(diǎn),連接DE.點(diǎn)P從點(diǎn)D出發(fā),沿DE方向勻速運(yùn)動(dòng);同時(shí),點(diǎn)Q從點(diǎn)E出發(fā),沿EB方向勻速運(yùn)動(dòng),兩者速度均為1cm/s;當(dāng)其中一點(diǎn)停止運(yùn)動(dòng)時(shí),另外一點(diǎn)也停止運(yùn)動(dòng).連接PQ、PF,設(shè)運(yùn)動(dòng)時(shí)間為ts(0<t<4).解答下列問題:
(1)當(dāng)t為何值時(shí),△EPQ為等腰三角形?
(2)如圖①,設(shè)四邊形PFBQ的面積為ycm2,求y與t之間的函數(shù)關(guān)系式;
(3)當(dāng)t為何值時(shí),四邊形PFBQ的面積與△ABC的面積之比為2:5?
(4)如圖②,連接FQ,是否存在某一時(shí)刻,使得PF與QF互相垂直?若存在,求出此時(shí)t的值;若不存,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】(操作發(fā)現(xiàn))
如圖①,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,△ABC的三個(gè)頂點(diǎn)均在格點(diǎn)上.
(1)請(qǐng)按要求畫圖:將△ABC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)90°,點(diǎn)B的對(duì)應(yīng)點(diǎn)為B′,點(diǎn)C的對(duì)應(yīng)點(diǎn)為C′,連接BB′
(2)在(1)所畫圖形中,∠AB′B= .
(問題解決)
如圖②,在等邊三角形ABC中,AC=,點(diǎn)P在△ABC內(nèi),且∠APC=90°,∠BPC=120°,求△APC的面積.
小明同學(xué)通過觀察、分析、思考,對(duì)上述問題形成了如下想法:
想法一:將△APC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)60°,得到△AP′B,連接PP′,尋找線段PA、PC之間的數(shù)量關(guān)系;
想法二:將△APB繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)60°,得到△AP′C′,連接PP′,尋找線段PA、PC之間的數(shù)量關(guān)系;
請(qǐng)參考小明同學(xué)的想法,完成該問題的解答過程.(求解一種方法即可)
(靈活運(yùn)用)
如圖③,在四邊形ABCD中,AE⊥BC,垂足為E,∠BAE=∠ADC,BE=CE=2,CD=5,AD=kAB(k為常數(shù)),直接寫出BD的長(zhǎng)(用含k的式子表示).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某公司生產(chǎn)的某種時(shí)令商品每件成本為20元,經(jīng)過市場(chǎng)調(diào)研發(fā)現(xiàn),這種商品在未來(lái)40天內(nèi)的日銷售量m(件)與時(shí)間t(天)的關(guān)系滿足:m=﹣2t+96.且未來(lái)40天內(nèi),前20天每天的價(jià)格y1(元/件)與時(shí)間t(天)的函數(shù)關(guān)系式為y1=t+25(1≤t≤20且t為整數(shù)),后20天每天的價(jià)格y2(元/件)與時(shí)間t(天)的函數(shù)關(guān)系式為y2=﹣t+40(21≤t<40且t為整數(shù)).下面我們就來(lái)研究銷售這種商品的有關(guān)問題
(1)請(qǐng)分別寫出未來(lái)40天內(nèi),前20天和后20天的日銷售利潤(rùn)w(元)與時(shí)間t的函數(shù)關(guān)系式;
(2)請(qǐng)預(yù)測(cè)未來(lái)40天中哪一天的日銷售利潤(rùn)最大,最大日銷售利潤(rùn)是多少?
(3)在實(shí)際銷售的前20天中,該公司決定每銷售一件商品就捐贈(zèng)a元利潤(rùn)(a<4)給希望工程.公司通過銷售記錄發(fā)現(xiàn),前20天中,每天扣除捐贈(zèng)后的日銷售利潤(rùn)隨時(shí)間t(天)的增大而增大,求a的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=4,過對(duì)角線BD中點(diǎn)O的直線分別交AB、CD邊于點(diǎn)E、F.
(1)求證:四邊形BEDF是平行四邊形;
(2)求證:△ADE≌△CBF;
(3)當(dāng)四邊形BEDF是菱形時(shí),直接寫出線段EF的長(zhǎng).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖所示,A、B 兩點(diǎn)分別位于一個(gè)池塘的兩端,小明想用繩子測(cè)量A、B 間的距離,但繩子不夠長(zhǎng),請(qǐng)你利用三角形全等的相關(guān)知識(shí)幫他設(shè)計(jì)一種方案測(cè)量出A、B間的距離,寫出具體的方案,并解釋其中的道理,
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】環(huán)保局對(duì)某企業(yè)排污情況進(jìn)行檢測(cè),結(jié)果顯示:所排污水中硫化物的濃度超標(biāo),即硫化物的濃度超過最高允許的1.0 mg/L.環(huán)保局要求該企業(yè)立即整改,在15天以內(nèi)(含15天)排污達(dá)標(biāo).整改過程中,所排污水中硫化物的濃度y(mg/L)與時(shí)間x(天)的變化規(guī)律如圖所示,其中線段AB表示前3天的變化規(guī)律,其中第3天時(shí)硫化物的濃度降為4 mg/L.從第3天起所排污水中硫化物的濃度y與時(shí)間x滿足下面表格中的關(guān)系:
時(shí)間x(天) | 3 | 4 | 5 | 6 | 8 | …… |
硫化物的濃y(mg/L) | 4 | 3 | 2.4 | 2 | 1.5 |
(1)求整改過程中當(dāng)0≤x<3時(shí),硫化物的濃度y與時(shí)間x的函數(shù)表達(dá)式;
(2)求整改過程中當(dāng)x≥3時(shí),硫化物的濃度y與時(shí)間x的函數(shù)表達(dá)式;
(3)該企業(yè)所排污水中硫化物的濃度,能否在15天以內(nèi)不超過最高允許的1.0 mg/L?為什么?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com