科目: 來源: 題型:
【題目】如圖,在△ABC中,AB=4,AC=6,∠ABC和∠ACB的平分線交于O點,過點O作BC的平行線交AB于M點,交AC于N點,則△AMN的周長為( )
A. 7 B. 8 C. 9 D. 10
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,高速公路上有A、B兩點相距25km,C、D為兩村莊,已知DA=10km,CB=15km.DA⊥AB于A,CB⊥AB于B,現要在AB上建一個服務站E,使得C、D兩村莊到E站的距離相等,則AE的長是( )km.
A.5B.10C.15D.25
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知∠BDA=∠CDA,則不一定能使△ABD≌△ACD的條件是( 。
A. BD=DC B. AB=AC C. ∠B=∠C D. ∠BAD=∠CAD
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,是半圓的直徑,、、是半圓的四等分點,于,連接、相交于點,連接、,下列結論:①;②;③,其中正確的結論是( )
A. ①②③ B. 只有①② C. 只有①③ D. 只有③
查看答案和解析>>
科目: 來源: 題型:
【題目】一種實驗用軌道彈珠,在軌道上行駛5分鐘后離開軌道,前2分鐘其速度v(米/分)與時間t(分)滿足二次函數v=at2,后三分鐘其速度v(米/分)與時間t(分)滿足反比例函數關系,如圖,軌道旁邊的測速儀測得彈珠1分鐘末的速度為2米/分,求:
(1)二次函數和反比例函數的關系式.
(2)彈珠在軌道上行駛的最大速度.
【答案】(1)v=(2<t≤5) (2)8米/分
【解析】分析:(1)由圖象可知前一分鐘過點(1,2),后三分鐘時過點(2,8),分別利用待定系數法可求得函數解析式;
(2)把t=2代入(1)中二次函數解析式即可.
詳解:(1)v=at2的圖象經過點(1,2),
∴a=2.
∴二次函數的解析式為:v=2t2,(0≤t≤2);
設反比例函數的解析式為v=,
由題意知,圖象經過點(2,8),
∴k=16,
∴反比例函數的解析式為v=(2<t≤5);
(2)∵二次函數v=2t2,(0≤t≤2)的圖象開口向上,對稱軸為y軸,
∴彈珠在軌道上行駛的最大速度在2秒末,為8米/分.
點睛:本題考查了反比例函數和二次函數的應用.解題的關鍵是從圖中得到關鍵性的信息:自變量的取值范圍和圖象所經過的點的坐標.
【題型】解答題
【結束】
24
【題目】閱讀材料:小胖同學發(fā)現這樣一個規(guī)律:兩個頂角相等的等腰三角形,如果具有公共的頂角的頂點,并把它們的底角頂點連接起來則形成一組旋轉全等的三角形.小胖把具有這個規(guī)律的圖形稱為“手拉手”圖形.如圖1,在“手拉手”圖形中,小胖發(fā)現若∠BAC=∠DAE,AB=AC,AD=AE,則BD=CE.
(1)在圖1中證明小胖的發(fā)現;
借助小胖同學總結規(guī)律,構造“手拉手”圖形來解答下面的問題:
(2)如圖2,AB=BC,∠ABC=∠BDC=60°,求證:AD+CD=BD;
(3)如圖3,在△ABC中,AB=AC,∠BAC=m°,點E為△ABC外一點,點D為BC中點,∠EBC=∠ACF,ED⊥FD,求∠EAF的度數(用含有m的式子表示).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=4,BC=3,O是△ABC的內心,以O為圓心,r為半徑的圓與線段AB有交點,則r的取值范圍是( )
A.r≥1 B.1≤r≤ C.1≤r≤ D.1≤r≤4
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知中,,厘米,厘米,點為的中點.如果點在線段上以每秒2厘米的速度由點向點運動,同時,點在線段上以每秒厘米的速度由點向點運動,設運動時間為(秒).
(1)用含的代數式表示的長度;
(2)若點、的運動速度相等,經過1秒后,與是否全等,請說明理由;
(3)若點、的運動速度不相等,當點的運動速度為多少時,能夠使與全等?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,圖①是一個三角形,分別連接三邊中點得圖②,再分別連接圖②中的小三角形三邊中點,得圖③……按此方法繼續(xù)下去.
在第個圖形中有______個三角形(用含的式子表示)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com