科目: 來源: 題型:
【題目】已如,在平面直角坐標(biāo)系中,點的坐標(biāo)為、點的坐標(biāo)為,點在軸上,作直線.點關(guān)于直線的對稱點剛好在軸上,連接.
(1)寫出一點的坐標(biāo),并求出直線對應(yīng)的函數(shù)表達式;
(2)點在線段上,連接、、,當(dāng)是等腰直角三角形時,求點坐標(biāo);
(3)如圖②,在(2)的條件下,點從點出發(fā)以每秒2個單位長度的速度向原點運動,到達點時停止運動,連接,過作的垂線,交軸于點,問點運動幾秒時是等腰三角形.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,⊙O的半徑為4,B是⊙O外一點,連接OB,且OB=6,過點B作⊙O的切線BD,切點為D,延長BO交⊙O于點A,過點A作切線BD的垂線,垂足為C.
(1)求證:AD平分∠BAC;
(2)求AC的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】一輛慢車與一輛快車分別從甲、乙兩地同時出發(fā),勻速相向而行,兩車在途中相遇后都停留一段時間,然后分別按原速一同駛往甲地后停車.設(shè)慢車行駛的時間為x小時,兩車之間的距離為y千米,圖中折線表示y與x之間的函數(shù)圖象,請根據(jù)圖象解決下列問題:
(1)甲乙兩地之間的距離為 千米;
(2)求快車和慢車的速度;
(3)求線段DE所表示的y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,一次函數(shù)的圖像與軸軸分別交于點、點,函數(shù),與的圖像交于第二象限的點,且點橫坐標(biāo)為.
(1)求的值;
(2)當(dāng)時,直接寫出的取值范圍;
(3)在直線上有一動點,過點作軸的平行線交直線于點,當(dāng)時,求點的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】 (2013年四川南充3分) 如圖1,點E為矩形ABCD邊AD上一點,點P,點Q同時從點B出發(fā),點P沿BE→ED→DC 運動到點C停止,點Q沿BC運動到點C停止,它們運動的速度都是1cm/s,設(shè)P,Q出發(fā)t秒時,△BPQ的面積為ycm,已知y與t的函數(shù)關(guān)系的圖形如圖2(曲線OM為拋物線的一部分),則下列結(jié)論:①AD=BE=5cm;②當(dāng)0<t≤5時,;③直線NH的解析式為;④若△ABE與△QBP相似,則t=秒。其中正確的結(jié)論個數(shù)為【 】
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直線AB與半徑為2的⊙O相切于點C,點D、E、F是⊙O上三個點,EF∥AB,若EF=,則∠EDC的度數(shù)為( 。
A. 60° B. 90° C. 30° D. 75°
查看答案和解析>>
科目: 來源: 題型:
【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長都是1,已知三角形的三個頂點的坐標(biāo)分別為,,
(1)作出三角形關(guān)于軸對稱的三角形
(2)點的坐標(biāo)為 .
(3)①利用網(wǎng)絡(luò)畫出線段的垂直平分線;②為直線上上一動點,則的最小值為 .
查看答案和解析>>
科目: 來源: 題型:
【題目】已知正比例函數(shù)反比例函數(shù)由構(gòu)造一個新函數(shù)其圖象如圖所示.(因其圖象似雙鉤,我們稱之為“雙鉤函數(shù)” ).給出下列幾個命題:
①該函數(shù)的圖象是中心對稱圖形;
②當(dāng)時,該函數(shù)在時取得最大值-2;
③的值不可能為1;
④在每個象限內(nèi),函數(shù)值隨自變量的增大而增大.
其中正確的命題是 .(請寫出所有正確的命題的序號)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知△ABC是邊長為4的等邊三角形,BC在x軸上,點D為BC的中點,點A在第一象限內(nèi),AB與y軸的正半軸交與點E,已知點B(﹣1,0).
(1)點A的坐標(biāo): ,點E的坐標(biāo): ;
(2)若二次函數(shù)y=﹣x2+bx+c過點A、E,求此二次函數(shù)的解析式;
(3)P是線段AC上的一個動點(P與點A、C不重合)連結(jié)PB、PD,設(shè)L是△PBD的周長,當(dāng)L取最小值時。
求:①點P的坐標(biāo)
②判斷此時點P是否在(2)中所求的拋物線上,請充分說明你的判斷理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀材料:已知,如圖(1),在面積為S的△ABC中, BC=a,AC=b, AB=c,內(nèi)切圓O的半徑為r連接OA、OB、OC,△ABC被劃分為三個小三角形.
∴.
(1)類比推理:若面積為S的四邊形ABCD存在內(nèi)切圓(與各邊都相切的圓),如圖(2),各邊長分別為AB=a,BC=b,CD=c,AD=d,求四邊形的內(nèi)切圓半徑r;
(2)理解應(yīng)用:如圖(3),在等腰梯形ABCD中,AB∥DC,AB=21,CD=11,AD=13,⊙O1與⊙O2分別為△ABD與△BCD的內(nèi)切圓,設(shè)它們的半徑分別為r1和r2,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com