科目: 來源: 題型:
【題目】已知拋物線(為常數,),其對稱軸是,與軸的一個交點在,之間.有下列結論:①;②;③若此拋物線過和兩點,則,其中,正確結論的個數為( )
A.B.C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線L1:y=-x2-2x+3交x軸于A,B兩點,交y軸于M點拋物線L1向右平移2個單位得到拋物線L2,L2交x軸于C,D兩點.
(1)求拋物線L2對應的函數表達式;
(2)拋物線L1或L2在x軸上方的部分是否存在點N,使以A,C,M,N為頂點的四邊形是平行四邊形?若存在,求出點N的坐標;若不存在,請說明理由;
(3)若點P是拋物線L1上的一個動點(P不與點A,B重合),那么點P關于原點的對稱點Q是否在拋物線L2上?請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,矩形ABCD中,AD=3厘米,AB=a厘米(a>3).動點M,N同時從B點出發(fā),分別沿B→A,B→C運動,速度是1厘米/秒.過M作直線垂直于AB,分別交AN,CD于P,Q.當點N到達終點C時,點M也隨之停止運動.設運動時間為t秒.
(1)若a=4厘米,t=1秒,則PM=______厘米;
(2)若a=5厘米,求時間t,使△PNB∽△PAD,并求出它們的相似比;
(3)若在運動過程中,存在某時刻使梯形PMBN與梯形PQDA的面積相等,求a的取值范圍;
查看答案和解析>>
科目: 來源: 題型:
【題目】我市某鎮(zhèn)組織20輛汽車裝運完三種品牌臍橙共100噸參加上海世博會,按計劃,20輛汽車都要裝運,每輛汽車只能裝運用一種臍橙,且必須裝滿。根據下表提供的信息,解答以下問題:
從A,B兩地運往甲,乙兩地的費用如下表:
臍橙品種 | A | B | C |
每輛汽車運載量(噸) | 6 | 5 | 4 |
每噸臍橙獲利(百元) | 12 | 16 | 10 |
(1)設裝運種臍橙的車輛數為,裝運種臍橙的車輛數為,求與之間的函數關系式;
(2)如果裝運每種臍橙的車輛數都不少于4輛,那么車輛的安排方案有幾種?并寫出每種安排方案?
(3)若要使此次銷售獲利最大,應采用哪種安排方案?請求出最大利潤的值
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四邊形ABCD內接于⊙O,BD是⊙O的直徑,AE⊥CD交CD的延長線于點E,DA平分∠BDE.
⑴求證:AE是⊙O的切線;
⑵若AE=4cm,CD=6cm,求AD的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】我校數學社團成員想利用所學的知識測量某廣告牌的寬度(圖中線段MN的長).直線MN垂直于地面,垂足為點P,在地面A處測得點M的仰角為60°,點N的仰角為45°,在B處測得點M的仰角為30°,AB=5米.且A、B、P三點在一直線上,請根據以上數據求廣告牌的寬MN的長.(結果保留根號)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,∠AOB=45°,過OA上到點O的距離分別為1,3,5,7,9,11,的點作OA的垂線與OB相交,得到并標出一組黑色梯形,它們的面積分別為S1,S2,S3,S4,…,觀察圖中的規(guī)律,求出第10個黑色梯形的面積S10=_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,點E,D,F分別在邊AB,BC,CA上,且DE∥CA,DF∥BA.下列四個判斷:①四邊形AEDF是平行四邊形;②如果∠BAC=90°,那么四邊形AEDF是矩形;③如果AD平分∠BAC,那么四邊形AEDF是菱形;④如果AD⊥BC且AB=AC,那么四邊形AEDF是菱形.正確的個數是( )
A.4B.3C.2D.1
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知拋物線分別交x軸、y軸于點A(2,0)、B(0,4),點P是線段AB上一動點,過點P作PC⊥x軸于點C,交拋物線于點D.
(1)若.
①求拋物線的解析式;
②當線段PD的長度最大時,求點P的坐標;
(2)當點P的橫坐標為1時,是否存在這樣的拋物線,使得以B、P、D為頂點的三角形與△AOB相似?若存在,求出滿足條件的拋物線的解析式;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在菱形ABCD中,AC=2,BD=2 3 ,AC,BD相交于點O.
(1)求邊AB的長;
(2)如圖2,將一個足夠大的直角三角板60°角的頂點放在菱形ABCD的頂點A處,繞點A左右旋轉,其中三角板60°角的兩邊分別與邊BC,CD相交于點E,F,連接EF與AC相交于點G.
①判斷△AEF是哪一種特殊三角形,并說明理由;
②旋轉過程中,當點E為邊BC的四等分點時(BE>CE),求CG的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com