科目: 來源: 題型:
【題目】如圖,已知正方形的邊長為2,是邊上的動點,交CD于F,垂足為G,連接,下列說法:①;②;③點G運動的路徑長為;④CG的最小值為;其中正確的是____________.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知點A(2,3)和點B(0,2),點A在反比例函數(shù)y= 的圖象上.作射線AB,再將射線AB繞點A按逆時針方向旋轉(zhuǎn)45°,交反比例函數(shù)圖象于點C,則點C的坐標(biāo)為________.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直線都與直線l垂直,垂足分別為M,N,MN=1,正方形ABCD的邊長為,對角線AC在直線l上,且點C位于點M處,將正方形ABCD沿l向右平移,直到點A與點N重合為止,記點C平移的距離為x,正方形ABCD的邊位于之間部分的長度和為y,則y關(guān)于x的函數(shù)圖象大致為( )
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】“如果二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個公共點,那么一元二次方程ax2+bx+c=0有兩個不相等的實數(shù)根.”請根據(jù)你對這句話的理解,解決下面問題:若m、n(m<n)是關(guān)于x的方程1﹣(x﹣a)(x﹣b)=0的兩根,且a<b,則a、b、m、n的大小關(guān)系是( ).
A. B.
C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,OF是∠MON的平分線,點A在射線OM上,P,Q是直線ON上的兩動點,點Q在點P的右側(cè),且PQ=OA,作線段OQ的垂直平分線,分別交直線OF、ON交于點B、點C,連接AB、PB.
(1)如圖1,當(dāng)P、Q兩點都在射線ON上時,請直接寫出線段AB與PB的數(shù)量關(guān)系;
(2)如圖2,當(dāng)P、Q兩點都在射線ON的反向延長線上時,線段AB,PB是否還存在(1)中的數(shù)量關(guān)系?若存在,請寫出證明過程;若不存在,請說明理由;
(3)如圖3,∠MON=60°,連接AP,設(shè)=k,當(dāng)P和Q兩點都在射線ON上移動時,k是否存在最小值?若存在,請直接寫出k的最小值;若不存在,請說明理由.
【答案】(1)AB=PB;(2)存在;(3)k=0.5.
【解析】試題分析:(1)結(jié)論:AB=PB.連接BQ,只要證明△AOB≌△PQB即可解決問題;
(2)存在.證明方法類似(1);
(3)連接BQ.只要證明△ABP∽△OBQ,即可推出=,由∠AOB=30°,推出當(dāng)BA⊥OM時, 的值最小,最小值為0.5,由此即可解決問題;
試題解析:解:(1)連接:AB=PB.理由:如圖1中,連接BQ.
∵BC垂直平分OQ,∴BO=BQ,∴∠BOQ=∠BQO,∵OF平分∠MON,∴∠AOB=∠BQO,∵OA=PQ,∴△AOB≌△PQB,∴AB=PB.
(2)存在,理由:如圖2中,連接BQ.
∵BC垂直平分OQ,∴BO=BQ,∴∠BOQ=∠BQO,∵OF平分∠MON,∠BOQ=∠FON,∴∠AOF=∠FON=∠BQC,∴∠BQP=∠AOB,∵OA=PQ,∴△AOB≌△PQB,∴AB=PB.
(3)連接BQ.
易證△ABO≌△PBQ,∴∠OAB=∠BPQ,AB=PB,∵∠OPB+∠BPQ=180°,∴∠OAB+∠OPB=180°,∠AOP+∠ABP=180°,∵∠MON=60°,∴∠ABP=120°,∵BA=BP,∴∠BAP=∠BPA=30°,∵BO=BQ,∴∠BOQ=∠BQO=30°,∴△ABP∽△OBQ,∴ =,∵∠AOB=30°,∴當(dāng)BA⊥OM時, 的值最小,最小值為0.5,∴k=0.5.
點睛:本題考查相似綜合題、全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是正確尋找全等三角形解決問題,學(xué)會用轉(zhuǎn)化的思想思考問題,屬于中考常考題型.
【題型】解答題
【結(jié)束】
28
【題目】如圖,已知拋物線y=ax2+x+c與x軸交于A,B兩點,與y軸交于丁C,且A(2,0),C(0,﹣4),直線l:y=﹣x﹣4與x軸交于點D,點P是拋物線y=ax2+x+c上的一動點,過點P作PE⊥x軸,垂足為E,交直線l于點F.
(1)試求該拋物線表達式;
(2)如圖(1),若點P在第三象限,四邊形PCOF是平行四邊形,求P點的坐標(biāo);
(3)如圖(2),過點P作PH⊥y軸,垂足為H,連接AC.
①求證:△ACD是直角三角形;
②試問當(dāng)P點橫坐標(biāo)為何值時,使得以點P、C、H為頂點的三角形與△ACD相似?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,圖2,△ABC是等邊三角形,D、E分別是AB、BC邊上的兩個動點(與點A、B、C不重合),始終保持BD=CE.
(1)當(dāng)點D、E運動到如圖1所示的位置時,求證:CD=AE.
(2)把圖1中的△ACE繞著A點順時針旋轉(zhuǎn)60°到△ABF的位置(如圖2),分別連結(jié)DF、EF.
①找出圖中所有的等邊三角形(△ABC除外),并對其中一個給予證明;
②試判斷四邊形CDFE的形狀,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,某飛機于空中探測某座山的高度,在點A處飛機的飛行高度是AF=3700米,從飛機上觀測山頂目標(biāo)C的俯角是45°,飛機繼續(xù)以相同的高度飛行300米到B處,此時觀測目標(biāo)C的俯角是50°.(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.20)
(1)直接寫出∠ACB的大小;
(2)求這座山的高度CD.
查看答案和解析>>
科目: 來源: 題型:
【題目】據(jù)報載,在“百萬家庭低碳行,垃圾分類要先行”活動中,某地區(qū)對隨機抽取的1000名公民的年齡段分布情況和對垃圾分類所持態(tài)度進行調(diào)查,并將調(diào)查結(jié)果分別繪成條形圖(圖1)、扇形圖(圖2).
(1)圖2中所缺少的百分?jǐn)?shù)是_________;
(2)這次隨機調(diào)查中,如果公民年齡的中位數(shù)是正整數(shù),那么這個中位數(shù)所在年齡段是_________(填寫年齡段);
(3)這次隨機調(diào)查中,年齡段是“25歲以下”的公民中“不贊成”的有5名,它占“25歲以下”人數(shù)的百分?jǐn)?shù)是________;
(4)如果把所持態(tài)度中的“很贊同”和“贊同”統(tǒng)稱為“支持”,那么這次被調(diào)查公民中“支持”的人有_______名.
查看答案和解析>>
科目: 來源: 題型:
【題目】列方程或方程組解應(yīng)用題:
北京市實施交通管理新措施以來,全市公共交通客運量顯著增加.據(jù)統(tǒng)計,2008年10月11日到2009年2月28日期間,地面公交日均客運量與軌道交通日均客運量總和為1696萬人次,地面公交日均客運量比軌道交通日均客運量的4倍少69萬人次.在此期間,地面公交和軌道交通日均客運量各為多少萬人次?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,⊙O的半徑為6cm,B為⊙O外一點,OB交⊙O于點A,AB=OA,動點P從點A出發(fā),以π cm/s的速度在⊙O上按逆時針方向運動一周回到點A立即停止.當(dāng)點P運動的時間為______時,BP與⊙O相切.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com