科目: 來源: 題型:
【題目】已知:如圖,在四邊形ABCD中,∠ABC=∠ADC=90°,DE⊥BC于E,連接BD,設AD=m,DC=n,BE=p,DE=q.
(1)若tanC=2,BE=3,CE=2,求點B到CD的距離;
(2)若m=n, BD=3,求四邊形ABCD的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,點P在∠BCA平分線CD上,且PA=PB.
(1)用尺規(guī)作出符合要求的點P(保留作圖痕跡,不需要寫作法);
(2)判斷△ABP的形狀(不需要寫證明過程)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線y=ax2+2x﹣3與x軸交于A、B兩點,且B(1,0)
(1)求拋物線的解析式和點A的坐標;
(2)如圖1,點P是直線y=x上的動點,當直線y=x平分∠APB時,求點P的坐標;
(3)如圖2,已知直線y=x﹣分別與x軸、y軸交于C、F兩點,點Q是直線CF下方的拋物線上的一個動點,過點Q作y軸的平行線,交直線CF于點D,點E在線段CD的延長線上,連接QE.問:以QD為腰的等腰△QDE的面積是否存在最大值?若存在,請求出這個最大值;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,矩形ABCD的頂點 A的坐標為(4,2),頂點B,C分別在軸,軸的正半軸上.
(1)求證:∠OCB=∠ABE;
(2)求OC長的取值范圍;
(3)若D的坐標為(,),請說明隨的變化情況.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了更好的落實陽光體育運動,學校需要購買一批足球和籃球,已知一個足球比一個籃球的進價高30元,買一個足球和兩個籃球一共需要300元.
(1)求足球和籃球的單價;
(2)學校決定購買足球和籃球共100個,為了加大校園足球活動開展力度,現要求購買的足球不少于60個,且用于購買這批足球和籃球的資金最多為11000元.試設計一個方案,使得用來購買的資金最少,并求出最小資金數.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,△ABC是等腰直角三角形,∠BAC= 90°,AB=AC,四邊形ADEF是正方形,點B、C分別在邊AD、AF上,此時BD=CF,BD⊥CF成立.
(1)當△ABC繞點A逆時針旋轉θ(0°<θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由.
(2)當△ABC繞點A逆時針旋轉45°時,如圖3,延長DB交CF于點H.
①求證:BD⊥CF;
②當AB=2,AD=3時,求線段DH的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣5(a≠0)與x軸交于點A(﹣5,0)和點B(3,0),與y軸交于點C.
(1)求該拋物線的解析式;
(2)若點E為x軸下方拋物線上的一動點,當S△ABE=S△ABC時,求點E的坐標;
(3)在(2)的條件下,拋物線上是否存在點P,使∠BAP=∠CAE?若存在,求出點P的橫坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在正方形ABCD中,O是對角線AC與BD的交點,M是BC邊上的動點(點M不與B,C重合),CN⊥DM,CN與AB交于點N,連接OM,ON,MN.下列四個結論:①△CNB≌△DMC;②△CON≌△DOM;③△OMN≌△OAD;④AN2+CM2=MN2;其中正確的結論是_____.(填寫所有正確結論的序號)
查看答案和解析>>
科目: 來源: 題型:
【題目】在“書香八桂,閱讀圓夢”讀書活動中,某中學設置了書法、國學誦讀、演講、征文四個比賽項目(每人只參加一個項目),九(2)班全班同學都參加了比賽,該班班長為了了解本班同學參加各項比賽的情況,收集整理數據后,繪制以下不完整的折線統(tǒng)計圖(圖1)和扇形統(tǒng)計圖(圖2),根據圖表中的信息解答下列各題:
(1)請求出九(2)全班人數;
(2)請把折線統(tǒng)計圖補充完整;
(3)南南和寧寧參加了比賽,請用“列表法”或“畫樹狀圖法”求出他們參加的比賽項目相同的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】為迎接“世界華人炎帝故里尋根節(jié)”,某工廠接到一批紀念品生產訂單,按要求在15天內完成,約定這批紀念品的出廠價為每件20元,設第x天(1≤x≤15,且x為整數)每件產品的成本是p元,p與x之間符合一次函數關系,部分數據如表:
天數(x) | 1 | 3 | 6 | 10 |
每件成本p(元) | 7.5 | 8.5 | 10 | 12 |
任務完成后,統(tǒng)計發(fā)現工人李師傅第x天生產的產品件數y(件)與x(天)滿足如下關系:y=,
設李師傅第x天創(chuàng)造的產品利潤為W元.
(1)直接寫出p與x,W與x之間的函數關系式,并注明自變量x的取值范圍:
(2)求李師傅第幾天創(chuàng)造的利潤最大?最大利潤是多少元?
(3)任務完成后.統(tǒng)計發(fā)現平均每個工人每天創(chuàng)造的利潤為299元.工廠制定如下獎勵制度:如果一個工人某天創(chuàng)造的利潤超過該平均值,則該工人當天可獲得20元獎金.請計算李師傅共可獲得多少元獎金?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com