科目: 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC=3cm.動點P從點A出發(fā),以cm/s的速度沿AB方向運動到點B.動點Q同時從點A出發(fā),以1cm/s的速度沿折線ACCB方向運動到點B.設(shè)△APQ的面積為y(cm2).運動時間為x(s),則下列圖象能反映y與x之間關(guān)系的是 ( )
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖是一副眼鏡鏡片下半部分輪廓對應(yīng)的兩條拋物線關(guān)于y軸對稱.AB∥x軸,AB=4cm,最低點C在x軸上,高CH=1cm,BD=2cm.則右輪廓線DFE所在拋物線的函數(shù)解析式為( )
A.y=(x+3)2
B.y=(x+3)2
C.y=(x﹣3)2
D.y=(x﹣3)2
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在等邊△ABC中,D是邊AC上一點,連接BD,將△BCD繞點B逆時針旋轉(zhuǎn)60°,得到△BAE,連接ED,若BC=10,BD=9,則△ADE的周長為( )
A. 19B. 20C. 27D. 30
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c的頂點坐標(biāo)為P(2,9),與x軸交于點A,B,與y軸交于點C(0,5).
(Ⅰ)求二次函數(shù)的解析式及點A,B的坐標(biāo);
(Ⅱ)設(shè)點Q在第一象限的拋物線上,若其關(guān)于原點的對稱點Q′也在拋物線上,求點Q的坐標(biāo);
(Ⅲ)若點M在拋物線上,點N在拋物線的對稱軸上,使得以A,C,M,N為頂點的四邊形是平行四邊形,且AC為其一邊,求點M,N的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,為原點,點,點,且,把繞點逆時針旋轉(zhuǎn),得,點,旋轉(zhuǎn)后的對應(yīng)點為,.
(1)點的坐標(biāo)為______.
(2)解答下列問題:
①設(shè)的面積為,用含的式子表示,并寫出的取值范圍.
②當(dāng)時,求點的坐標(biāo)(直接寫出結(jié)果即可).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,二次函數(shù)與軸交于、兩點,與軸交于頂點,已知,.
(1)求此二次函數(shù)的解析式及點坐標(biāo).
(2)在拋物線上存在一點使的面積為10,不存在說明理由,如果存在,請求出的坐標(biāo).
(3)根據(jù)圖象直接寫出時,的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】某商場將進(jìn)價為2000元的冰箱以2400元售出,平均毎天能售出8臺,為了配合國家“家電下鄉(xiāng)”政策的實施,商場決定采取適當(dāng)?shù)慕祪r措施.調(diào)査表明:這種冰箱的售價毎降低50元,平均每天就能多售出4臺.
(1)假設(shè)每臺冰箱降價元,商場每天銷售這種冰箱的利潤為元,請寫出與間的函數(shù)表達(dá)式;(不要求寫出自變量的取值范圍)
(2)商場要想在這種冰箱銷售中毎天盈利4800元,同時又要使百姓得到實惠,毎臺冰箱應(yīng)降價多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】關(guān)于的一元二次方程有兩個不相等的實數(shù)根.
(1)求的取值范圍.
(2)是否存在實數(shù),使方程的兩個實數(shù)根互為相反數(shù)?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線經(jīng)過點A,作AB⊥x軸于點B,將△ABO繞點B逆時針旋轉(zhuǎn)60°得到△CBD.若點B的坐標(biāo)為(2, 0),則點C的坐標(biāo)為( )
A.(﹣1,)B.(﹣2,)C.(,1)D.(,2)
查看答案和解析>>
科目: 來源: 題型:
【題目】二次函數(shù)的部分圖象如圖所示,圖象過點,對稱軸為直線,
下列結(jié)論:
①;
②;
③;
④若點,點,點在該函數(shù)圖象上,則;
⑤若方程的兩根為和,且,則.
其中正確的結(jié)論有( )
A.2個B.3個C.4個D.5個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com