科目: 來源: 題型:
【題目】如圖,AB,AC是⊙O的弦,過點C作CE⊥AB于點D,交⊙O于點E,過點B作BF⊥AC于點F,交CE于點G,連接BE。
(1)求證:BE=BG;
(2)過點B作BH⊥AB交⊙O于點H,若BE的長等于半徑,BH=4,AC=,求CE的長。
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知△ABC中,∠C=90°,AC=BC=,將△ABC繞點A順時針方向旋轉60°到△ABC的位置,連接C'B.
(1)求∠ABC'的度數;
(2)求C'B的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】某商場為了吸引更多的顧客,安排了一個抽獎活動,并規(guī)定:顧客每購買100元商品,就能獲得一次抽獎的機會.抽獎規(guī)則如下:在抽獎箱內,有100個牌子,分別寫有1,2,3,…,100共100個數字,抽到末位數是5的可獲20元購物券,抽到數字是88的可獲200元購物券,抽到66或99的可獲100元購物券.某顧客購物用了130元,他獲得購物券的概率是多少?他獲得20元、100元、200元購物券的概率分別是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線y=x2在第一象限內經過的整數點(橫坐標,縱坐標都為整數的點)依次為A1,A2,A3,…An,…,將拋物線y=x2沿直線L:y=x向上平移,得一系列拋物線,且滿足下列條件:
①拋物線的頂點M1,M2,M3,…Mn,…都在直線L:y=x上;
②拋物線依次經過點A1,A2,A3…An,….
則M2016頂點的坐標為________.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線y=ax2+bx+c開口向上,與x軸交于點A、B,與y軸交于點C
(1) 如圖1,若A (1,0)、C (0,3)且對稱軸為直線x=2,求拋物線的解析式
(2) 在(1)的條件下,如圖2,作點C關于拋物線對稱軸的對稱點D,連接AD、BD,在拋物線上是否存在點P,使∠PAD=∠ADB,若存在,求出點P的坐標,若不存在,請說明理由
(3) 若直線l:y=mx+n與拋物線有兩個交點M、N(M在N的左邊),Q為拋物線上一點(不與M、N重合),過點Q作QH平行于y軸交直線l于點H,求的值
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在△ABC中,∠ABC=90°,BA=BC.將線段AB繞點A逆時針旋轉90°得到線段AD,E是邊BC上的一動點,連結DE交AC于點F,連結BF.
(1)求證:FB=FD;
(2)如圖2,連結CD,點H在線段BE上(不含端點),且BH=CE,連結AH交BF于點N.
①判斷AH與BF的位置關系,并證明你的結論;
②連接CN.若AB=2,請直接寫出線段CN長度的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】為落實“精準扶貧”精神,市農科院專家指導李大爺利用坡前空地種植優(yōu)質草莓.根據場調查,在草莓上市銷售的30天中,其銷售價格(元/公斤)與第天之間滿足(為正整數),銷售量(公斤)與第天之間的函數關系如圖所示:
如果李大爺的草莓在上市銷售期間每天的維護費用為80元.
(1)求銷售量與第天之間的函數關系式;
(2)求在草莓上市銷售的30天中,每天的銷售利潤與第天之間的函數關系式;(日銷售利潤=日銷售額﹣日維護費)
(3)求日銷售利潤的最大值及相應的.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知二次函數y=x2+bx+c過點A(1,0),C(0,﹣3)
(1)求此二次函數的解析式;
(2)在拋物線上存在一點P使△ABP的面積為10,請直接寫出點P的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了解市民對全市創(chuàng)文工作的滿意程度,某中學數學興趣小組在全市甲、乙兩個區(qū)內進行了調查統(tǒng)計,將調查結果分為不滿意,一般,滿意,非常滿意四類,回收、整理好全部問卷后,得到下列不完整的統(tǒng)計圖.
請結合圖中信息,解決下列問題:
(1)求此次調查中接受調查的人數.
(2)求此次調查中結果為非常滿意的人數.
(3)興趣小組準備從調查結果為不滿意的4位市民中隨機選擇2位進行回訪,已知4位市民中有2位來自甲區(qū),另2位來自乙區(qū),請用列表或用畫樹狀圖的方法求出選擇的市民均來自甲區(qū)的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=2,∠BAD=60°,將菱形ABCD繞點A逆時針方向旋轉,對應得到菱形AEFG,點E在AC上,EF與CD交于點P,則DP的長是________.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com