科目: 來源: 題型:
【題目】全民健身運動已成為一種時尚,為了了解我市居民健身運動的情況,某健身館的工作人員開展了一項問卷調查,問卷包括五個項目:A:健身房運動;B:跳廣場舞;C:參加暴走團;D:散布;E:不運動.
以下是根據(jù)調查結果繪制的統(tǒng)計圖表的一部分.
運動形式 | A | B | C | D | E |
人數(shù) | 12 | 30 | m | 54 | 9 |
請你根據(jù)以上信息,回答下列問題:
(1)接受問卷調查的共有 人,圖表中的m= ,n= ;
(2)統(tǒng)計圖中,A類所對應的扇形圓心角的度數(shù)為 ;
(3)根據(jù)調查結果,我市市民最喜愛的運動方式是 ,不運動的市民所占的百分比是 ;
(4)我市碧沙崗公園是附近市民喜愛的運動場所之一,每晚都有“暴走團”活動,若最鄰近的某社區(qū)約有1500人,那么估計一下該社區(qū)參加碧沙崗“暴走團”的大約有多少人?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=2,E為斜邊AB的中點,點P是射線BC上的一個動點,連接AP、PE,將△AEP沿著邊PE折疊,折疊后得到△EPA′,當折疊后△EPA′與△BEP的重疊部分的面積恰好為△ABP面積的四分之一,則此時BP的長為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖(1),四邊形ABCD中,AB∥CD,∠ADC=90°,P從A點出發(fā),以每秒1個單位長度的速度,按A→B→C→D的順序在邊上勻速運動,設P點的運動時間為t秒,△PAD的面積為S,S關于t的函數(shù)圖象如圖(2)所示,當P運動到BC中點時,△PAD的面積為( )
A. 4B. 5C. 6D. 7
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,平面直角坐標系中,矩形OABC繞原點O逆時針旋轉30°后得到矩形OA′B′C′,A′B′與BC交于點M,延長BC交B′C′于N,若A(,0),C(0,1),則點N的坐標為( 。
A.(,1)B.(,1)C.(,1)D.(,1)
查看答案和解析>>
科目: 來源: 題型:
【題目】探究:已知二次函數(shù)經(jīng)過點.
(1)求該函數(shù)的表達式;
(2)如圖所示,點是拋物線上在第二象限內的一個動點,且點的橫坐標為,連接,,.
①求的面積關于的函數(shù)關系式;
②求的面積的最大值,并求出此時點的坐標.
拓展:在平面直角坐標系中,點的坐標為,的坐標為,若拋物線與線段有兩個不同的交點,請直接寫出的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】對給定的一張矩形紙片ABCD進行如下操作:先沿CE折疊,使點B落在CD邊上(如圖①),再沿CH折疊,這時發(fā)現(xiàn)點E恰好與點D重合(如圖②)
(1)根據(jù)以上操作和發(fā)現(xiàn),求的值;
(2)將該矩形紙片展開.
①如圖③,折疊該矩形紙片,使點C與點H重合,折痕與AB相交于點P,再將該矩形紙片展開.求證:∠HPC=90°;
②不借助工具,利用圖④探索一種新的折疊方法,找出與圖③中位置相同的P點,要求只有一條折痕,且點P在折痕上,請簡要說明折疊方法.(不需說明理由)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC內接于⊙O,,點為上的動點,且.
(1)求的長度;
(2)在點D運動的過程中,弦AD的延長線交BC的延長線于點E,問ADAE的值是否變化?若不變,請求出ADAE的值;若變化,請說明理由.
(3)在點D的運動過程中,過A點作AH⊥BD,求證:.
查看答案和解析>>
科目: 來源: 題型:
【題目】某服裝店以每件40元的價格購進一批襯衫,在試銷過程中統(tǒng)計發(fā)現(xiàn),每月的銷售量y(件)與銷售單價x(其中x為正整數(shù),且50≤x≤75)(元)之間有下表關系:
銷售單價x(元) | 50 | 55 | 60 | 65 | 70 | 75 |
每月銷售量y(件) | 160 | 140 | 120 | 100 | 80 | 60 |
(1)若y與x之間的函數(shù)關系是下列函數(shù)關系之一,則y是x的______
A.正比例函數(shù) B.一次函數(shù) C.反比例函數(shù) D.二次函數(shù)
(2)求y與x的函數(shù)關系式;
(3)如果不考慮其它費用,該店銷售這種襯衫的月利潤為1600元,這種襯衫的銷售單價應定為多少元?
(4)如果每銷售一件襯衫需要支出各種費用2元,設服裝店每月銷售這種襯衫獲利為w元,銷售單價為多少元時,服裝店獲利w最大,最大利潤是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,某中學數(shù)學活動小組在學習了“利用三角函數(shù)測高”后,選定測量小河對岸一幢建筑物BC的高度,他們先在斜坡上的D處,測得建筑物頂端B的仰角為30°.且D離地面的高度DE=5m.坡底EA=30m,然后在A處測得建筑物頂端B的仰角是60°,點E,A,C在同一水平線上,求建筑物BC的高.(結果用含有根號的式子表示)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,有四張背面完全相同的紙牌,其正面分別畫有四個不同的幾何圖形,將這四張紙牌背面朝上洗勻.
(1)從中隨機摸出一張,求摸出的牌面圖形是中心對稱圖形的概率;
(2)小明和小亮約定做一個游戲,其規(guī)則為:先由小明隨機摸出一張紙牌,不放回,再由小亮從剩下的紙牌中隨機摸出一張,若摸出的兩張牌面圖形都是軸對稱圖形小明獲勝,否則小亮獲勝,這個游戲公平嗎?請用列表法(或樹狀圖)說明理由(紙牌用表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com