科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=﹣5x+5與x軸、y軸分別交于A,C兩點,拋物線y=x2+bx+c經(jīng)過A,C兩點,與x軸交于另一點B.
(1)求拋物線解析式及B點坐標;
(2)x2+bx+c≥﹣5x+5的解集 .
(3)若點M在第一象限內(nèi)拋物線上一動點,連接MA、MB,當點M運動到某一位置時,△ABM面積為△ABC的面積的倍,求此時點M的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】在一次羽毛球賽中,甲運動員在離地面米的P點處發(fā)球,球的運動軌跡PAN看作一個拋物線的一部分,當球運動到最高點A時,其高度為3米,離甲運動員站立地點O的水平距離為5米,球網(wǎng)BC離點O的水平距離為6米,以點O為原點建立如圖所示的坐標系,乙運動員站立地點M的坐標為(m,0).
(1)求拋物線的解析式(不要求寫自變量的取值范圍);
(2)求羽毛球落地點N離球網(wǎng)的水平距離(即NC的長);
(3)乙原地起跳后可接球的最大高度為2.4米,若乙因為接球高度不夠而失球,求m的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】根據(jù)下列條件,求二次函數(shù)的解析式.
(1)圖象經(jīng)過(0,1),(1,﹣2),(2,3)三點;
(2)圖象的頂點(2,3),且經(jīng)過點(3,1);
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線與直線交于A,B兩點,交x軸與D,C兩點,連接AC,已知A(0,3),C(3,0).(1)拋物線的解析式__;(2)設(shè)E為線段AC上一點(不含端點),連接DE,一動點M從點D出發(fā),沿線段DE以每秒一個單位速度運動到E點,再沿線段EA以每秒個單位的速度運動到A后停止.若使點M在整個運動中用時最少,則點E的坐標__.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1是一款優(yōu)雅且穩(wěn)定的拋物線型落地?zé),防滑螺?/span>C為拋物線支架的最高點,燈罩D距離地面1.86米,點最高點C距燈柱的水平距離為1.6米,燈柱AB及支架的相關(guān)數(shù)據(jù)如圖2所示.若茶幾擺放在燈罩的正下方,則茶幾到燈柱的距離AE為__米.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在4×4的網(wǎng)格中,每一個小方格都是邊長為1的小正方形,每個小正方形的頂點稱為格點,以O為坐標原點建立如圖所示的平面直角坐標系.若拋物線y=x2+bx+c的圖象至少經(jīng)過圖中(4×4的網(wǎng)格中)的三個格點,并且至少一個格點在x軸上,則符合要求的拋物線一定不經(jīng)過的格點坐標為( 。
A.(1,3)B.(2,3)C.(1,4)D.(2,4)
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,先將拋物線y=2x2﹣4x關(guān)于y軸作軸對稱變換,再將所得的拋物線,繞它的頂點旋轉(zhuǎn)180°,那么經(jīng)兩次變換后所得的新拋物線的函數(shù)表達式為( 。
A.y=﹣2x﹣4xB.y=﹣2x+4x
C.y=﹣2x﹣4x﹣4D.y=﹣2x+4x+4
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線經(jīng)過,兩點,且與軸交于點,拋物線與直線交于,兩點.
(1)求拋物線的解析式;
(2)坐標軸上是否存在一點,使得是以為底邊的等腰三角形?若存在,請直接寫出點的坐標;若不存在,說明理由.
(3)點在軸上且位于點的左側(cè),若以,,為頂點的三角形與相似,求點的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】背景知識:如圖,在中,,若,則:.
(1)解決問題:
如圖(1),,,是過點的直線,過點作于點,連接,現(xiàn)嘗試探究線段、、 之間的數(shù)量關(guān)系:過點作,與交于點,易發(fā)現(xiàn)圖中出現(xiàn)了一對全等三角形,即,由此可得線段、、之間的數(shù)量關(guān)系是: ;
(2)類比探究:
將圖(1)中的繞點旋轉(zhuǎn)到圖(2)的位置,其它條件不變,試探究線段、、之間的數(shù)量關(guān)系,并證明;
(3)拓展應(yīng)用:
將圖(1)中的繞點旋轉(zhuǎn)到圖 (3)的位置,其它條件不變,若,,則的長為 (直接寫結(jié)果).
查看答案和解析>>
科目: 來源: 題型:
【題目】小聰對函數(shù)的圖象和性質(zhì)進行了探究.已知當自變量的值為0或4時,函數(shù)值都為-3,當自變量的值為-1或5時,函數(shù)值為2.
探究過程如下,請補充完整.
(1)這個函數(shù)的表達式為 ;
(2)在給出的平面直角坐標系中,畫出這個函數(shù)的圖象并寫出這個函數(shù)的一條性質(zhì): ;
(3)進一步探究函數(shù)圖象并解決問題:
①直線與函數(shù)有4個解,則k的取值范圍為 ;
②已知函數(shù)的圖象如圖所示,結(jié)合你所畫的函數(shù)圖象,寫出不等式的解集: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com