科目: 來源: 題型:
【題目】某文具店銷售甲、乙兩種圓規(guī),當銷售5只甲種、1只乙種圓規(guī),可獲利潤25元,銷售6只甲種、3只乙種圓規(guī),可獲利潤39元.
(1)問該文具店銷售甲、乙兩種圓規(guī),每只的利潤分別是多少元?
(2)在(1)中,文具店共銷售甲、乙兩種圓規(guī)50只,其中甲種圓規(guī)為a只,求文具店所獲得利潤P與a的函數(shù)關(guān)系式,并求當a≥30時P的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】下表是2018年三月份某居民小區(qū)隨機抽取20戶居民的用水情況::
月用水量/噸 | 15 | 20 | 25 | 30 | 35 | 40 | 45 |
戶數(shù) | 2 | 4 | m | 4 | 3 | 0 | 1 |
(1)求出m= ,補充畫出這20戶家庭三月份用電量的條形統(tǒng)計圖;
(2)據(jù)上表中有關(guān)信息,計算或找出下表中的統(tǒng)計量,并將結(jié)果填入表中:
統(tǒng)計量名稱 | 眾數(shù) | 中位數(shù) | 平均數(shù) |
數(shù)據(jù) |
|
|
|
(3)為了倡導(dǎo)“節(jié)約用水綠色環(huán)!钡囊庾R,江贛市自來水公司實行“梯級用水、分類計費”,價格表如下:
月用水梯級標準 | Ⅰ級(30噸以內(nèi)) | Ⅱ級(超過30噸的部分) |
單價(元/噸) | 2.4 | 4 |
如果該小區(qū)有500戶家庭,根據(jù)以上數(shù)據(jù),請估算該小區(qū)三月份有多少戶家庭在Ⅰ級標準?
(4)按上表收費,如果某用戶本月交水費120元,請問該用戶本月用水多少噸?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,有一時鐘,時針OA長為6cm,分針OB長為8cm,△OAB隨著時間的變化不停地改變形狀.求:
(1)如圖①,13點時,△OAB的面積是多少?
(2)如圖②,14點時,△OAB的面積比13點時增大了還是減少了?為什么?
(3)問多少整點時,△OAB的面積最大?最大面積是多少?請說明理由.
(4)設(shè)∠BOA=α(0°≤α≤180°),試歸納α變化時△OAB的面積有何變化規(guī)律(不證明)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在一張ABCD的紙片中,ABCD的面積為6,DC=3,∠BCD=45°,點P是BD上的一動點(點P與點B,D不重合).現(xiàn)將這張紙片分別沿BD,AP剪成三塊,并按圖2(注:圖2中的①,②是將圖1中的①,②翻轉(zhuǎn)背面朝上,再拼接而成的)所示放置
(1)當點P是BD的中點時,求AP的長.
(2)試探究:當點P在BD的什么位置上時,MN的長最?請求出這個最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知二次函數(shù)y=ax2﹣2ax﹣2的圖象(記為拋物線C1)頂點為M,直線l:y=2x﹣a與x軸,y軸分別交于A,B.
(1)對于拋物線C1,以下結(jié)論正確的是 ;
①對稱軸是:直線x=1;②頂點坐標(1,﹣a﹣2);③拋物線一定經(jīng)過兩個定點.
(2)當a>0時,設(shè)△ABM的面積為S,求S與a的函數(shù)關(guān)系;
(3)將二次函數(shù)y=ax2﹣2ax﹣2的圖象C1繞點P(t,﹣2)旋轉(zhuǎn)180°得到二次函數(shù)的圖象(記為拋物線C2),頂點為N.
①當﹣2≤x≤1時,旋轉(zhuǎn)前后的兩個二次函數(shù)y的值都會隨x的增大而減小,求t的取值范圍;
②當a=1時,點Q是拋物線C1上的一點,點Q在拋物線C2上的對應(yīng)點為Q',試探究四邊形QMQ'N能否為正方形?若能,求出t的值,若不能,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖①,在△ABC中,以AB為直徑的⊙O交AC于點D,點E在BC上,連接BD,DE,∠CDE=∠ABD.
(1)求證:DE是⊙O的切線.
(2)如圖②,當∠ABC=90°時,線段DE與BC有什么數(shù)量關(guān)系?請說明理由.
(3)如圖③,若AB=AC=10,sin∠CDE=,求BC的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,AB=3,BC=4,∠ABC=90°,過B作A1B⊥AC,過A1作A1B1⊥BC,得陰影Rt△A1B1B;再過B1作B1A2⊥AC,過A2作A2B2⊥BC,得陰影Rt△A2B2B1;…如此下去.請猜測這樣得到的所有陰影三角形的面積之和為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】下面兩個統(tǒng)計圖反映的是甲、乙兩所學(xué)校三個年級的學(xué)生在各校學(xué)生總?cè)藬?shù)中的占比情況,下列說法錯誤的是( )
A.甲校中七年級學(xué)生和八年級學(xué)生人數(shù)一樣多B.乙校中七年級學(xué)生人數(shù)最多
C.乙校中八年級學(xué)生比九年級學(xué)生人數(shù)少D.甲、乙兩校的九年級學(xué)生人數(shù)一樣多
查看答案和解析>>
科目: 來源: 題型:
【題目】拋物線y=ax2+bx+c的頂點為D(–1,2),與x軸的一個交點A在點(–3,0)和(–2,0)之間,其部分圖象如下圖,則以下結(jié)論:①b2–4ac<0;②a+b+c<0;③c–a=2;④方程ax2+bx+c–2=0有兩個相等的實數(shù)根.其中正確結(jié)論的個數(shù)為( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線y=mx+2mx-3m(m≠0)的頂點為H,與軸交于A、B兩點(B點在A點右側(cè)),點H、B關(guān)于直線l:對稱,過點B作直線BK∥AH交直線l于K點.
(1)求A、B兩點坐標,并證明點A在直線I上。
(2)求此拋物線的解析式;
(3)將此拋物線向上平移,當拋物線經(jīng)過K點時,設(shè)頂點為N,求出NK的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com