【題目】如圖,在網格中,每個小正方形的邊長都為1,網格中有兩個格點和直線,且長為36

1)求作點關于直線的對稱點

2為直線上一動點,在圖中標出使的值最小的點,且求出的最小值?

3)求周長的最小值?

【答案】1)見解析;(2)點P位置見解析,最小值為5;(38.6

【解析】

1)根據(jù)題意作圖即可
2)連接BA1交直線l于點P,由兩點間,線段最短即可確定點P的位置
3)由(2)中求得點P的位置,即可得AB+AP+BP=AB+A1P+BP=AB+A1B

1)如圖,點A1即為所作點A關于直線l的對稱點
2)連接BA1交直線l于點P,連接ABAP,則AP=A1P,由兩點之間,線段最短可知,最短值為5,


3)由(2)可知,點P 即可使ABP最小的位置
ABP周長的最小值為AB+AP+BP=AB+A1P+BP=3.6+A1B=3.6+5=8.6

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某年級共有400名學生,為了解該年級學生上學的交通方式,從中隨機抽取100名學生進行問卷調查,并對調查數(shù)據(jù)進行整理、描述和分析,下面給出了部分信息

A.不同交通方式學生人數(shù)分布統(tǒng)計圖如下:

B.采用公共交通方式單程所花費時間(分鐘)的頻數(shù)分布直方圖如下(數(shù)據(jù)分成6組:,,,);

根據(jù)以上信息,完成下列問題:

1)補全頻數(shù)分布直方圖;

2)根據(jù)不同交通方式學生人數(shù)所占的百分比,算出“私家車方式”對應扇形的圓心角是度_____

3)請你估計全年級乘坐公共交通上學有_____人,其中單程不少于60分鐘的有_____人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,線段AB9,射線BGAB,P為射線BG上一點,AP為邊作正方形APCD,C、D與點BAP兩側,在線段DP取一點E,使∠EAP=∠BAP,直線CE與線段AB相交于點F(F與點A、B不重合).

(1)求證:△AEP≌△CEP

(2)判斷CFAB的位置關系,并說明理由;

(3)求△AEF的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了更好地保護環(huán)境,某區(qū)污水處理廠決定購買A,B兩種型號污水處理設備10臺,其中每臺的價格、月處理污水量如下表.已知購買一臺A型設備比購買一臺B型設備多2萬元,購買2A型設備比購買3B型設備少6萬元.

(1)求a,b的值;

(2)某區(qū)污水處理廠決定購買污水處理設備的資金既不少于108萬元也不超過110萬元,問有幾種購買方案?每月最多能處理污水多少噸?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市從 2018 1 1 日開始,禁止燃油助力車上路,于是電動自 行車的市場需求量日漸增多某商店計劃最多投入 8 萬元購進 A、B 兩種型號的 電動自行車共 30 輛,其中每輛 B 型電動自行車比每輛 A 型電動自行車多 500 元.用 5 萬元購進的 A 型電動自行車與用 6 萬元購進的 B 型電動自行車數(shù)量一 樣.

(1)求 A、B 兩種型號電動自行車的進貨單價;

(2)若 A 型電動自行車每輛售價為 2800 ,B 型電動自行車每輛售價為 3500 元,設該商店計劃購進 A 型電動自行車 m 輛,兩種型號的電動自行車全部銷售 后可獲利潤 y 元.寫出 y m 之間的函數(shù)關系式;

(3)該商店如何進貨才能獲得最大利潤?此時最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】興趣小組的同學要測量樹的高度.在陽光下,一名同學測得一根長為1米的竹竿的影長為0.4米,同時另一名同學測量樹的高度時,發(fā)現(xiàn)樹的影子不全落在地面上,有一部分落在教學樓的第一級臺階上,測得此影長為0.2米,一級臺階高為0.3米,如圖所示,若此時落在地面上的影長為4.4米,求樹的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB=AC,BDACD,CEABEBD、CE相交于F,若∠C=30°,DF=2,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1,是一個長為,寬為的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后按圖2的形狀拼成一個正方形.

1)圖2中的陰影部分的面積為

2)觀察圖2,三個代數(shù)式,,之間的等量關系是 ;

3)若,,求;

4)觀察圖3,你能得到怎樣的代數(shù)恒等式呢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2017重慶A卷第11題)如圖,小王在長江邊某瞭望臺D處,測得江面上的漁船A的俯角為40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡長BC=10米,則此時AB的長約為( 。▍⒖紨(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).

A. 5.1 B. 6.3 C. 7.1 D. 9.2

查看答案和解析>>

同步練習冊答案