【題目】已知函數(shù).

1)當(dāng)時,求曲線處的切線方程;

2)求函數(shù)的單調(diào)區(qū)間;

3)若函數(shù)在區(qū)間內(nèi)有且只有一個極值點,求的取值范圍.

【答案】(Ⅰ)(Ⅱ)見解析(Ⅲ)

【解析】

(Ⅰ)根據(jù)導(dǎo)數(shù)的幾何意義求出切線的斜率,由點斜式方程可得答案;(Ⅱ)對m進(jìn)行討論,解可得函數(shù)的增區(qū)間,解得函數(shù)的減區(qū)間;(III)由題意可知g′(x=0在(1,2)上有解,討論m的范圍,判斷g′(x)的單調(diào)性和零點個數(shù),得出結(jié)論.

(Ⅰ)當(dāng)時,

所以,

,

所以曲線處的切線方程為

(Ⅱ)函數(shù)的定義域為

,

1)當(dāng)時,

因為,

所以的單調(diào)增區(qū)間為,無單調(diào)減區(qū)間.

2)當(dāng),即時,令,得

當(dāng)時,;

當(dāng)時,

所以的單調(diào)增區(qū)間為,減區(qū)間為

綜上,當(dāng)時,的單調(diào)增區(qū)間為,無單調(diào)減區(qū)間;

當(dāng)時,的單調(diào)增區(qū)間為,減區(qū)間為

(Ⅲ)因為

所以.

.

若函數(shù)在區(qū)間內(nèi)有且只有一個極值點,

則函數(shù)在區(qū)間內(nèi)存在零點.

,

所以內(nèi)有唯一零點.

時,

時,

內(nèi)為減函數(shù),在內(nèi)為增函數(shù).

又因為內(nèi)存在零點,

所以

解得.

顯然內(nèi)有唯一零點,記為.

當(dāng)時,時,,所以點兩側(cè)異號,即點兩側(cè)異號,為函數(shù)在區(qū)間內(nèi)唯一極值點.

當(dāng)時,

內(nèi)成立,

所以內(nèi)單調(diào)遞增,故無極值點.

當(dāng)時,易得,無極值點.

所以當(dāng)且僅當(dāng)時,函數(shù)在區(qū)間內(nèi)有且只有一個極值點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下關(guān)于圓錐曲線的命題中:①雙曲線與橢圓有相同的焦點;②設(shè)是兩個定點,為非零常數(shù),若,則動點的軌跡為雙曲線的一支;③設(shè)點分別是定圓上一個定點和動點,為坐標(biāo)原點,若,則動點的軌跡為圓;其中真命題是_________.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯誤的是( )

A. 垂直于同一個平面的兩條直線平行

B. 若兩個平面垂直,則其中一個平面內(nèi)垂直于這兩個平面交線的直線與另一個平面垂直

C. 一個平面內(nèi)的兩條相交直線均與另一個平面平行,則這兩個平面平行

D. 一條直線與一個平面內(nèi)的無數(shù)條直線垂直,則這條直線和這個平面垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為慶祝某校一百周年校慶,展示該校一百年來的辦學(xué)成果及優(yōu)秀校友風(fēng)采,學(xué)校準(zhǔn)備校慶期間搭建一個扇形展覽區(qū),如圖,是一個半徑為2百米,圓心角為的扇形展示區(qū)的平面示意圖.是半徑上一點,點是圓弧上一點,且.為了實現(xiàn)“以展養(yǎng)展”,現(xiàn)決定:在線段、線段及圓弧三段所示位置設(shè)立廣告位,經(jīng)測算廣告位出租收入是:線段處每百米元,線段及圓弧處每百米均為.設(shè)弧度,廣告位出租的總收入為.

1)求關(guān)于的函數(shù)解析式,并指出該函數(shù)的定義域;

2)試問為何值時,廣告位出租的總收入最大,并求出其最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分14分)一種畫橢圓的工具如圖1所示.是滑槽的中點,短桿ON可繞O轉(zhuǎn)動,長桿MN通過N處鉸鏈與ON連接,MN上的栓子D可沿滑槽AB滑動,且.當(dāng)栓子D在滑槽AB內(nèi)作往復(fù)運動時,帶動N轉(zhuǎn)動,M處的筆尖畫出的橢圓記為C.以為原點,所在的直線為軸建立如圖2所示的平面直角坐標(biāo)系.

)求橢圓C的方程;

)設(shè)動直線與兩定直線分別交于兩點.若直線總與橢圓有且只有一個公共點,試探究:的面積是否存在最小值?若存在,求出該最小值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1)已知是虛數(shù)單位)是關(guān)于的方程的根,,求的值;

2)已知是虛數(shù)單位)是關(guān)于的方程的一個根,、,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,直線是拋物線)和圓C的公切線,切點(在第一象限)分別為P、Q.F為拋物線的焦點,切線交拋物線的準(zhǔn)線于A,且.

1)求切線的方程;

2)求拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,橢圓的離心率為,過橢圓的左焦點,且斜率為的直線,與以右焦點為圓心,半徑為的圓相切.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)線段是橢圓過右焦點的弦,且,求的面積的最大值以及取最大值時實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商家耗資4500萬元購進(jìn)一批(虛擬現(xiàn)實)設(shè)備,經(jīng)調(diào)試后計劃明年開始投入使用,由于設(shè)備損耗和維護(hù),第一年需維修保養(yǎng)費用200萬元,從第二年開始,每年的維修保并費用比上一年增40萬元.該設(shè)備使用后,每年的總收入為2800萬元.

(1)求盈利額(萬元)與使用年數(shù)之間的函數(shù)關(guān)系式;

(2)該設(shè)備使用多少年,商家的年平均盈利額最大?最大年平均盈利額是多少?

查看答案和解析>>

同步練習(xí)冊答案