設(shè)函數(shù)f(x)=x+
ax+1
,  x∈[0,+∞)

(1)當a=2時,求函數(shù)f(x)的最小值;
(2)當0<a<1時,試判斷函數(shù)f(x)的單調(diào)性,并證明.
分析:(1)當a=2時,將函數(shù)f(x)變形成f(x)=x+
2
x+1
=x+1+
2
x+1
-1
,然后利用均值不等式即可求出函數(shù)f(x)的最小值;
(2)先取值任取0≤x1<x2然后作差f(x1)-f(x2),判定其符號即可判定函數(shù)f(x)在[0,+∞)上的單調(diào)性.
解答:解:(1)當a=2時,f(x)=x+
2
x+1
=x+1+
2
x+1
-1
.(2分)
≥2
2
-1
.(4分)
當且僅當x+1=
2
x+1
,即x=
2
-1
時取等號,
f(x)min=2
2
-1
.(6分)
(2)當0<a<1時,任取0≤x1<x2f(x1)-f(x2)=(x1-x2)[1-
a
(x1+1)(x2+1)
]
.(8分)
∵0<a<1,(x1+1)(x2+1)>1,
1-
a
(x1+1)(x2+1)
>0
.(10分)
∵x1<x2,∴f(x1)<f(x2),即f(x)在[0,+∞)上為增函數(shù).(12分)
點評:本題主要考查了函數(shù)的最值的求解,以及函數(shù)單調(diào)性的判斷與證明,同時考查了計算能力,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=p(x-
1
x
)-2lnx,g(x)=
2e
x
(p是實數(shù),e為自然對數(shù)的底數(shù))
(1)若f(x)在其定義域內(nèi)為單調(diào)函數(shù),求p的取值范圍;
(2)若直線l與函數(shù)f(x),g(x)的圖象都相切,且與函數(shù)f(x)的圖象相切于點(1,0),求p的值;
(3)若在[1,e]上至少存在一點x0,使得f(x0)>g(x0)成立,求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)的定義域為D,若存在非零實數(shù)l使得對于任意x∈M(M⊆D),有x+l∈D,且f(x+1)≥f(x),則稱f(x)為M上的高調(diào)函數(shù).現(xiàn)給出下列三個命題:
①函數(shù)f(x)=(
12
)x
為R上的l高調(diào)函數(shù);
②函數(shù)f(x)=sin2x為R上的π高調(diào)函數(shù);
③如果定義域是[-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的m高調(diào)函數(shù),那么實數(shù)m的取值范圍[2,+∞);
其中正確的命題是
②③
②③
(填序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)恒成立;當x∈[0,1]時,f(x)=x3-4x+3.有下列命題:
f(-
3
4
) <f(
15
2
)

②當x∈[-1,0]時f(x)=x3+4x+3;
③f(x)(x≥0)的圖象與x軸的交點的橫坐標由小到大構(gòu)成一個無窮等差數(shù)列;
④關(guān)于x的方程f(x)=|x|在x∈[-3,4]上有7個不同的根.
其中真命題的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學 來源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案