19.在直角坐標(biāo)系xOy中,直線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=1+t}\\{y=1-t}\end{array}\right.$(t為參數(shù));以O(shè)為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=1.
(1)求曲線C2的直角坐標(biāo)方程,說明它表示什么曲線,并寫出其參數(shù)方程;
(2)過直線C1上的點向曲線C2作切線,求切線長得最小值.

分析 (1)曲線C2的極坐標(biāo)方程為ρ=1.根據(jù)ρ2=x2+y2可得曲線C2的直角坐標(biāo)方程再轉(zhuǎn)化為參數(shù)方程.
(2)求圓心到直線的距離,利用勾股定理可得切線長的最小值.

解答 解:(1)曲線C2的極坐標(biāo)方程為ρ=1.
∴曲線C2的直角坐標(biāo)方程為1=x2+y2
圓心(0,0),半徑r=1.
參數(shù)方程為$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$.
(2)直線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=1+t}\\{y=1-t}\end{array}\right.$(t為參數(shù));消去參數(shù)t,可得:x+y=2.
圓心到直線的距離d=$\frac{2}{\sqrt{2}}=\sqrt{2}$,
那么:切線長l=$\sqrt{kgjanac^{2}-{r}^{2}}=1$
∴切線長的最小值為1.

點評 本題考查參數(shù)方程、極坐標(biāo)方程、普通方程的互化,以及應(yīng)用,切線長的最小值問題.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2017屆山東濰坊臨朐縣高三10月月考數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

如圖,陰影區(qū)域的邊界是直線及曲線,則這個區(qū)域的面積是( )

A.8 B.4

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆湖南長沙長郡中學(xué)高三上周測十二數(shù)學(xué)(文)試卷(解析版) 題型:選擇題

執(zhí)行如圖所示的程序框圖,輸出的值是( )

A.5 B.4

C.3 D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知點P(sinα-cosα,tanα)在第一象限,在[0,2π]內(nèi)求α的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)點P(x,y)是不等式組$\left\{\begin{array}{l}{y≥0}\\{x-2y+1≥0}\\{x+y≤3}\end{array}\right.$,所表示的平面區(qū)域內(nèi)的任意一點,向量$\overrightarrow{m}$=(1,1),$\overrightarrow{n}$=(2,1),點O是坐標(biāo)原點.若向量$\overrightarrow{OP}$=λ$\overrightarrow{m}$+μ$\overrightarrow{n}$(λ,μ∈R),則λ-μ的取值范圍是( 。
A.[-$\frac{3}{2}$,$\frac{2}{3}$]B.[-6,2]C.[-1,$\frac{7}{2}$]D.[-4,$\frac{2}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在平面直角坐標(biāo)系xOy中,橢圓C與雙曲線${y^2}-\frac{x^2}{2}=1$共焦點,且點P(1,2)在橢圓C上.
(1)求橢圓C的方程;
(2)過定點A(2,0)作一條動直線與橢圓C相交于P,Q.O為坐標(biāo)原點,求△OPQ面積的最大值及取得最大值時直線PQ的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知F是雙曲線C:y2-mx2=3m(m>0)的一個焦點,則點F到C的一條漸近線的距離為(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆湖南長沙長郡中學(xué)高三上周測十二數(shù)學(xué)(理)試卷(解析版) 題型:解答題

已知橢圓的左焦點為,為橢圓上一點,軸于點,且的中點.

(1)求橢圓的方程;

(2)直線與橢圓有且只有一個公共點,平行于的直線交,交橢圓于不同的亮點,,問是否存在常熟,使得,若存在,求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知F1(-c,0),F(xiàn)2(c,0)為橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的兩個焦點,點P(不在x軸上)為橢圓上的一點,且滿足${\overrightarrow{PF}_1}•\overrightarrow{P{F_2}}={c^2}$,則橢圓的離心率的取值范圍是( 。
A.$[{\frac{{\sqrt{3}}}{3},1})$B.$[{\frac{1}{3},\frac{1}{2}}]$C.$[{\frac{{\sqrt{3}}}{3},\frac{{\sqrt{2}}}{2}})$D.$({0,\frac{{\sqrt{2}}}{2}}]$

查看答案和解析>>

同步練習(xí)冊答案