甲乙兩人相約10天之內(nèi)在某地會(huì)面,約定先到的人等候另一人3天后方可離開(kāi),若他們?cè)谄谙迌?nèi)到達(dá)目的地是等可能的,則此二人會(huì)面的概率是多少?
考點(diǎn):幾何概型
專(zhuān)題:應(yīng)用題,概率與統(tǒng)計(jì)
分析:設(shè)x表示甲到達(dá)該地點(diǎn)的時(shí)間,y表示乙到達(dá)該地點(diǎn)的時(shí)間,則0≤x≤10,0≤y≤10,整個(gè)事件空間構(gòu)成一個(gè)邊長(zhǎng)為10的正方形,其中兩人能會(huì)面的條件是-3≤x-y≤3,利用幾何概型可求概率.
解答: 解:本題考查幾何概型,設(shè)x表示甲到達(dá)該地點(diǎn)的時(shí)間,y表示乙到達(dá)該地點(diǎn)的時(shí)間,則0≤x≤10,0≤y≤10
整個(gè)事件空間構(gòu)成一個(gè)邊長(zhǎng)為10的正方形,其中兩人能會(huì)面的條件是-3≤x-y≤3,如圖,
可知兩人能會(huì)面的概率為約束條件對(duì)應(yīng)的可行域的面積與正方形的面積的比,
即P=
100-49
100
=
51
100
點(diǎn)評(píng):本題主要考查幾何概型,解題的關(guān)鍵是用面積作為測(cè)度,利用面積比求概率.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,半徑為30cm的
1
4
圓形(O為圓心)鐵皮上截取一塊矩形材料OABC,其中點(diǎn)B在圓弧上,點(diǎn)A、C在兩半徑上,現(xiàn)將此矩形材料卷成一個(gè)以AB為母線的圓柱形罐子的側(cè)面(不計(jì)剪裁和拼接損耗),設(shè)OB與矩形材料的邊OA的夾角為θ,圓柱的體積為Vcm3;
(1)求V關(guān)于θ的函數(shù)關(guān)系式;
(2)求圓柱形罐子體積V的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax+lnx,其中實(shí)數(shù)a為常數(shù).
(Ⅰ)當(dāng)a=-l時(shí),確定f(x)的單調(diào)區(qū)間:
(Ⅱ)若f(x)在區(qū)間(0,e](e為自然對(duì)數(shù)的底數(shù))上的最大值為-3,求a的值;
(Ⅲ)當(dāng)a=-1時(shí),證明|f(x)|>
lnx
x
+
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2+xlnx(a∈R).
(1)當(dāng)a=-
1
2
時(shí),討論函數(shù)f(x)的單調(diào)性;
(2)在區(qū)間(1,2)內(nèi)任取兩個(gè)實(shí)數(shù)p,q,且p≠q,若不等式
f(p+1)-f(q+1)
p-q
>1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,四棱錐S-ABCD中,底面ABCD為平行四邊形,側(cè)面SBC⊥底面ABCD,∠ABC=45°,AB=SA=SB=2.
(1)證明:SA⊥BC;
(2)求直線SB與平面SDA所成的角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)點(diǎn)A(3,
5
2
),B(4,
3
),C(-3,-
5
2
),D(5,0),其中三點(diǎn)在雙曲線
x2
a2
-
y2
b2
=1,(a>0,b>0)上,另一點(diǎn)在直線l上.
(1)求雙曲線方程;
(2)設(shè)直線l的斜率存在且為k,它與雙曲線的同一支分別交于兩點(diǎn)E、F(F點(diǎn)在上方,E點(diǎn)在下方),M、N分別為雙曲線的左、右頂點(diǎn),求滿足條件S△MDF=4S△DNE的k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的頂點(diǎn)A是定點(diǎn),邊BC在定直線l上滑動(dòng),|BC|=4,BC邊上的高為3,求△ABC的外心M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系中,角φ,2x的終邊分別與單位圓(以原點(diǎn)O為圓心)交于A、B兩點(diǎn),函數(shù)f(x)=
OA
OB
,若f(x)≤f(
π
6
)對(duì)任意x∈R恒成立
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的最小正周期,對(duì)稱(chēng)軸方程與單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,四棱錐P-ABCD中,底面ABCD為正方形,PD⊥平面ABCD,PD=AB=2,E,F(xiàn),G分別為PC、PD、BC的中點(diǎn).
(1)求證:PA∥面EFG;
(2)求三棱錐C-EFG的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案