已知,
R
(Ⅰ)當(dāng)時,解不等式
;
(Ⅱ)若恒成立,求k的取值范圍.
(Ⅰ){x|x>-};(Ⅱ)[12,+∞).
解析試題分析:(Ⅰ)利用分類討論思想將函數(shù)轉(zhuǎn)化為分段函數(shù),然后逐一求解每個不等式;(Ⅱ)利用絕對值性質(zhì)定理求解f(x)=|ax-4|-|ax+8|的最大值,然后確定k的取值范圍.
試題解析:(Ⅰ)當(dāng)a=2時,
f(x)=2(|x-2|-|x+4|)=
當(dāng)x<-4時,不等式不成立;
當(dāng)-4≤x≤2時,由-4x-4<2,得-<x≤2;
當(dāng)x>2時,不等式必成立.
綜上,不等式f(x)<2的解集為{x|x>-}.
(Ⅱ)因為f(x)=|ax-4|-|ax+8|≤|(ax-4)-(ax+8)|=12,
當(dāng)且僅當(dāng)ax≤-8時取等號.
所以f(x)的最大值為12.
故k的取值范圍是[12,+∞).
考點:1.絕對值不等式的解法;2.絕對值不等式的性質(zhì)定理.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=|x-2|+2|x-a|(a∈R).
(I)當(dāng)時,解不等式f(x)>3;
(II)不等式在區(qū)間(-∞,+∞)上恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,將從點M出發(fā)沿縱、橫方向到達(dá)點N的任一路徑成為M到N的一條“L路徑”。如圖所示的路徑都是M到N的“L路徑”。某地有三個新建的居民區(qū),分別位于平面xOy內(nèi)三點
處�,F(xiàn)計劃在x軸上方區(qū)域(包含x軸)內(nèi)的某一點P處修建一個文化中心。
(I)寫出點P到居民區(qū)A的“L路徑”長度最小值的表達(dá)式(不要求證明);
(II)若以原點O為圓心,半徑為1的圓的內(nèi)部是保護區(qū),“L路徑”不能進入保護區(qū),請確定點P的位置,使其到三個居民區(qū)的“L路徑”長度值和最小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
選修4-5:不等式選講(本小題滿分10分)
設(shè)函數(shù),其中
。
(Ⅰ)當(dāng)時,求不等式
的解集;
(Ⅱ)若不等式的解集為
,求a的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=|2x+1|-|x-4|.
(1)解不等式f(x)>2;
(2)求函數(shù)y=f(x)的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com