(本題13分)在幾何體ABCDE中,∠BAC= ,DC⊥平面ABC,EB⊥平面ABC,F(xiàn)是BC的中點(diǎn),AB=AC=BE=2,CD=1. 
(1)求證:DC∥平面ABE;
(2)求證:AF⊥平面BCDE;
(3)求幾何體ABCDE的體積.

(1)證明:見解析;(2)證明:見解析;(3)2。

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

四棱錐的側(cè)面是等邊三角形,平面,平面,是棱的中點(diǎn).

(1)求證:平面
(2)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
如圖,直角梯形ABCD中,∠B=90°,AD//BC,AD=1,BC=2,
∠C=60°,將該梯形繞著AB所在的直線為軸旋轉(zhuǎn)一周,求該旋轉(zhuǎn)體的表面積和體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖4,已知平面是圓柱的軸截面(經(jīng)過圓柱的軸的截面),BC是圓柱底面的直徑,O為底面圓心,E為母線的中點(diǎn),已知
(I))求證:⊥平面
(II)求二面角的余弦值.
(Ⅲ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題8分)如圖,ABCD是正方形,O是正方形的中心, PO底面ABCD,E是PC的中點(diǎn)。
求證:(1)PA∥平面BDE  (2)平面PAC平面BDE

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)
如圖所示,在正三棱柱ABC -A1B1C1中,底面邊長和側(cè)棱長都是2,D是側(cè)棱CC1上任意一點(diǎn),E是A1B1的中點(diǎn)。

(I)求證:A1B1//平面ABD;
(II)求證:AB⊥CE;
(III)求三棱錐C-ABE的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,在四面體中,,兩兩互相垂直,且

(1)求證:平面平面;
(2)求二面角的大;
(3)若直線與平面所成的角為,求線段的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,直三棱柱中,,,是棱的中點(diǎn).
(Ⅰ)證明:;
(Ⅱ)求二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

.(9分)下圖是一幾何體的直觀圖、主視圖、俯視圖、左視圖.
(1)若F為PD的中點(diǎn),求證:AF⊥面PCD;
(2)證明BD∥面PEC;

查看答案和解析>>

同步練習(xí)冊答案