(本題13分)在幾何體ABCDE中,∠BAC= ,DC⊥平面ABC,EB⊥平面ABC,F(xiàn)是BC的中點(diǎn),AB=AC=BE=2,CD=1.
(1)求證:DC∥平面ABE;
(2)求證:AF⊥平面BCDE;
(3)求幾何體ABCDE的體積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,直角梯形ABCD中,∠B=90°,AD//BC,AD=1,BC=2,
∠C=60°,將該梯形繞著AB所在的直線為軸旋轉(zhuǎn)一周,求該旋轉(zhuǎn)體的表面積和體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖4,已知平面是圓柱的軸截面(經(jīng)過圓柱的軸的截面),BC是圓柱底面的直徑,O為底面圓心,E為母線的中點(diǎn),已知
(I))求證:⊥平面;
(II)求二面角的余弦值.
(Ⅲ)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題8分)如圖,ABCD是正方形,O是正方形的中心, PO底面ABCD,E是PC的中點(diǎn)。
求證:(1)PA∥平面BDE (2)平面PAC平面BDE
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
如圖所示,在正三棱柱ABC -A1B1C1中,底面邊長和側(cè)棱長都是2,D是側(cè)棱CC1上任意一點(diǎn),E是A1B1的中點(diǎn)。
(I)求證:A1B1//平面ABD;
(II)求證:AB⊥CE;
(III)求三棱錐C-ABE的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,在四面體中,,,兩兩互相垂直,且.
(1)求證:平面平面;
(2)求二面角的大;
(3)若直線與平面所成的角為,求線段的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
.(9分)下圖是一幾何體的直觀圖、主視圖、俯視圖、左視圖.
(1)若F為PD的中點(diǎn),求證:AF⊥面PCD;
(2)證明BD∥面PEC;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com