【題目】已知數(shù)列{an}是公差不為0的等差數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和,S5=20,a1 , a3 , a7成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn+1=bn+an , 且b1=1,求數(shù)列{ }的前n項(xiàng)和Tn .
【答案】
(1)解:由題可知, ,得a1=2d
因?yàn)镾5=20,所以a3=4,所以a1=2,d=1
所以an=n+1
(2)解:由(1)可知,bn+1﹣bn=n+1,
所以:b2﹣b1=2,b3﹣b2=3,b4﹣b3=4,…,bn﹣bn﹣1=n.
由累加法可得: ,所以
所以Tn=2 + +…+ =2 =
【解析】(1)利用等比數(shù)列與等差數(shù)列的通項(xiàng)公式即可得出.(2)利用“累加求和”與“裂項(xiàng)求和”方法即可得出.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解數(shù)列的前n項(xiàng)和的相關(guān)知識(shí),掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系,以及對(duì)數(shù)列的通項(xiàng)公式的理解,了解如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,我海監(jiān)船在D島海域例行維權(quán)巡航,某時(shí)刻航行至A處,此時(shí)測(cè)得其北偏東30°方向與它相距20海里的B處有一外國(guó)船只,且D島位于海監(jiān)船正東18海里處.
(1)求此時(shí)該外國(guó)船只與D島的距離;
(2)觀測(cè)中發(fā)現(xiàn),此外國(guó)船只正以每小時(shí)4海里的速度沿正南方航行.為了將該船攔截在離D島12海里的E處(E在B的正南方向),不讓其進(jìn)入D島12海里內(nèi)的海域,試確定海監(jiān)船的航向,并求其速度的最小值(角度精確到0.1°,速度精確到0.1海里/小時(shí)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程選講]在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線C1的參數(shù)方程為 為參數(shù)),曲線C2的極坐標(biāo)方程為 .
(1)求曲線C1的普通方程和曲線C2的直角坐標(biāo)方程;
(2)設(shè)P為曲線C1上一點(diǎn),Q曲線C2上一點(diǎn),求|PQ|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a,b∈R且a<b,若a3eb=b3ea , 則下列結(jié)論中一定正確的個(gè)數(shù)是( ) ①a+b>6;②ab<9;③a+2b>9;④a<3<b.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】秦九韶是我國(guó)南宋時(shí)期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書(shū)九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法,如圖所示的程序框圖給出了利用秦九韶算法求某多項(xiàng)式值的一個(gè)實(shí)例,若輸入n,x的值分別為4,3,則輸出v的值為( )
A.20
B.61
C.183
D.548
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)不等式﹣2<|x﹣1|﹣|x+2|<0的解集為M,a、b∈M,
(1)證明:| a+ b|< ;
(2)比較|1﹣4ab|與2|a﹣b|的大小,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的左、右焦點(diǎn)分別為F1 , F2 , 上頂點(diǎn)為B,若△BF1F2的周長(zhǎng)為6,且點(diǎn)F1到直線BF2的距離為b. (Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)A1 , A2是橢圓C長(zhǎng)軸的兩個(gè)端點(diǎn),點(diǎn)P是橢圓C上不同于A1 , A2的任意一點(diǎn),直線A1P交直線x=m于點(diǎn)M,若以MP為直徑的圓過(guò)點(diǎn)A2 , 求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】空間幾何體ABCDEF如圖所示.已知面ABCD⊥面ADEF,ABCD為梯形,ADEF為正方形,且AB∥CD,AB⊥AD,CD=4,AB=AD=2,G為CE的中點(diǎn). (Ⅰ)求證:BG∥面ADEF;
(Ⅱ)求證:面DBG⊥面BDF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在R上的偶函數(shù)f(x)在[0,+∞)上遞減,若不等式f(x3﹣x2+a)+f(﹣x3+x2﹣a)≥2f(1)對(duì)x∈[0,1]恒成立,則實(shí)數(shù)a的取值范圍為( )
A.[ ,1]
B.[﹣ ,1]
C.[1,3]
D.(﹣∞,1]
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com