【題目】在數(shù)列{an}中,a1=1,an+1=(1+ )an+ .
(1)設bn= ,求數(shù)列{bn}的通項公式;
(2)求數(shù)列{an}的前n項和Sn .
【答案】
(1)解:由已知得b1=a1=1,且 = + ,
即bn+1=bn+ ,從而b2=b1+ ,
b3=b2+ ,
bn=bn﹣1+ (n≥2).
于是bn=b1+ + +…+ =2﹣ (n≥2).
又b1=1,
故所求的通項公式為bn=2﹣
(2)解:由(1)知an=2n﹣ ,
故Sn=(2+4+…+2n)﹣(1+ + + +…+ ),
設Tn=1+ + + +…+ ,①
Tn= + + +…+ + ,②
①﹣②得,
Tn=1+ + + +…+ ﹣
= ﹣ =2﹣ ﹣ ,
∴Tn=4﹣ .
∴Sn=n(n+1)+ ﹣4
【解析】(1)由已知得 = + ,即bn+1=bn+ ,由此能夠推導出所求的通項公式.(2)由題設知an=2n﹣ ,故Sn=(2+4+…+2n)﹣(1+ + + +…+ ),設Tn=1+ + + +…+ ,由錯位相減法能求出Tn=4﹣ .從而導出數(shù)列{an}的前n項和Sn .
【考點精析】利用數(shù)列的前n項和和數(shù)列的通項公式對題目進行判斷即可得到答案,需要熟知數(shù)列{an}的前n項和sn與通項an的關(guān)系;如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式.
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分為16分)已知函數(shù).
(1)若,求函數(shù)的極值,并指出極大值還是極小值;
(2)若,求函數(shù)在上的最值;
(3)若,求證:在區(qū)間上,函數(shù)的圖象在的圖象下方.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題p:x∈[1,2],x2﹣a≥0,命題q:x0∈R,使得x02+(a﹣1)x0﹣1<0,若p∨q為真,p∧q為假,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下面有五個命題:
①函數(shù)y=sin4θ﹣cos4θ的最小正周期是π;
②終邊在y軸上的角的集合是 ;
③把 的圖象向右平移 得到y(tǒng)=3sin2x的圖象;
④函數(shù) 在[0,π]是減函數(shù);
其中真命題的序號是(寫出所有真命題的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本題滿分16分)已知函數(shù), .
(1)若函數(shù)在上單調(diào)遞增,求實數(shù)的取值范圍;
(2)若直線是函數(shù)圖象的切線,求的最小值;
(3)當時,若與的圖象有兩個交點,求證: .(取為,取為,取為)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,PA⊥底面ABC,∠ACB=90°,AE⊥PB于E,AF⊥PC于F,若PA=AB=2,∠BPC=θ,則當△AEF的面積最大時,tanθ的值為( )
A.2
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax3+bx+c在點x=2處取得極值c﹣16. (Ⅰ)求a,b的值;
(Ⅱ)若f(x)有極大值28,求f(x)在[﹣3,3]上的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設對于任意實數(shù)x,不等式|x+7|+|x﹣1|≥m恒成立.
(1)求m的取值范圍;
(2)當m取最大值時,解關(guān)于x的不等式:|x﹣3|﹣2x≤2m﹣12.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
如圖,⊙O內(nèi)切于△ABC的邊于D,E,F(xiàn),AB=AC,連接AD交⊙O于點H,直線HF交BC的延長線于點G.
(Ⅰ)求證:圓心O在直線AD上;
(Ⅱ)求證:點C是線段GD的中點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com