【題目】已知曲線C1的參數(shù)方程為t為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ16cosθ.

1)把曲線C2的極坐標方程化為直角坐標方程;

2)求C1C2交點的直角坐標.

【答案】1x2+y216x2

【解析】

1)首先利用轉(zhuǎn)換關系,把參數(shù)方程極坐標方程和直角坐標方程之間進行轉(zhuǎn)換.

2)利用曲線間的位置關系式的應用求出交點的坐標.

1)由ρ16cosθ得,ρ216ρcosθ.

曲線C2的直角坐標方程為x2+y216x.

2)由得,,.

相乘得,曲線C1的直角坐標方程為4x2y216.

得,5x216x160.

解得x4.

x4時,y248,時,無實數(shù)解.

所以,C1C2交點的直角坐標為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱臺中,分別為的中點.

)求證:平面;

)若平面,,

,求平面與平面所成角(銳角)的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐PABCD中,PB⊥平面ABCD,ABBC,ADBC,AD2BC2,ABBCPB,點E為棱PD的中點.

1)求證:CE∥平面PAB;

2)求證:AD⊥平面PAB

3)求二面角EACD的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列結(jié)論

(1)某學校從編號依次為001,002,…,900的900個學生中用系統(tǒng)抽樣的方法抽取一個樣本,已知樣本中有兩個相鄰的編號分別為053,098,則樣本中最大的編號為862.

(2)甲組數(shù)據(jù)的方差為5,乙組數(shù)據(jù)為5、6、9、10、5,那么這兩組數(shù)據(jù)中較穩(wěn)定的是甲.

(3)若兩個變量的線性相關性越強,則相關系數(shù)的值越接近于1.

(4)對A、B、C三種個體按3:1:2的比例進行分層抽樣調(diào)查,若抽取的A種個體有15個,則樣本容量為30.

則正確的個數(shù)是

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若方程有實數(shù)根,則稱為函數(shù)的一個不動點.已知函數(shù)為自然對數(shù)的底數(shù)).

1)當是否存在不動點?并證明你的結(jié)論;

2)若,求證有唯一不動點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】新型冠狀病毒肺炎COVID-19疫情發(fā)生以來,在世界各地逐漸蔓延.在全國人民的共同努力和各級部門的嚴格管控下,我國的疫情已經(jīng)得到了很好的控制.然而,每個國家在疫情發(fā)生初期,由于認識不足和措施不到位,感染確診人數(shù)都會出現(xiàn)加速增長.如表是小王同學記錄的某國從第一例新型冠狀病毒感染確診之日開始,連續(xù)8天每日新型冠狀病毒感染確診的累計人數(shù).

日期代碼

1

2

3

4

5

6

7

8

累計確診人數(shù)

4

8

16

31

51

71

97

122

為了分析該國累計感染確診人數(shù)的變化趨勢,小王同學分別用兩種模型:

,②對變量的關系進行擬合,得到相應的回歸方程并進行殘差分析,殘差圖如下(注:殘差,且經(jīng)過計算得,其中,

1)根據(jù)殘差圖,比較模型①,②的擬合效果,應該選擇哪個模型?并簡要說明理由;

2)根據(jù)(1)中選定的模型求出相應的回歸方程;

3)如果第9天該國仍未采取有效的防疫措施,試根據(jù)(2)中所求的回歸方程估計該國第9天新型冠狀病毒感染確診的累計人數(shù).(結(jié)果保留為整數(shù))

附:回歸直線的斜率和截距的最小二乘估計公式分別為:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中,錯誤命題是

A. ,則的逆命題為真

B. 線性回歸直線必過樣本點的中心

C. 在平面直角坐標系中到點的距離的和為的點的軌跡為橢圓

D. 在銳角中,有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】50名學生調(diào)查對A、B兩事件的態(tài)度,有如下結(jié)果:贊成A的人數(shù)是全體的五分之三,其余的不贊成,贊成B的比贊成A的多3人,其余的不贊成;另外,對A、B都不贊成的學生數(shù)比對AB都贊成的學生數(shù)的三分之一多1. 問對A、B都贊成的學生有____________

查看答案和解析>>

同步練習冊答案