【題目】某食品公司研發(fā)生產(chǎn)一種新的零售食品,從產(chǎn)品中抽取200件作為樣本,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得到如下的頻率分布直方圖:
(1)求直方圖中的值;
(2)由頻率分布直方圖可認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)值服從正態(tài)分布,試計(jì)算這批產(chǎn)品中質(zhì)量指標(biāo)值落在上的件數(shù);
(3)設(shè)產(chǎn)品的生產(chǎn)成本為,質(zhì)量指標(biāo)值為,生產(chǎn)成本與質(zhì)量指標(biāo)值滿足函數(shù)關(guān)系式,假設(shè)同組中的每個(gè)數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的右端點(diǎn)代替,試計(jì)算生產(chǎn)該食品的平均成本.參考數(shù)據(jù):若,則,,.
【答案】(1)0.033;(2)68;(3)84.52
【解析】
(1)根據(jù)頻率之和為1,由頻率分布直方圖中的數(shù)據(jù),得到結(jié)果.
(2)根據(jù)樣本容量和方差,求出正態(tài)分布中的概率,得到的概率,再乘以樣本容量,得到所求件數(shù).
(3)由頻率分布直方圖得到產(chǎn)品的成本分組及其頻率分布表,再計(jì)算出其平均成本.
(1)由頻率分布直方圖可得,
解得.
(2)由于,則,,所以,于是,.
又因?yàn)?/span>,所以,于是.
故這批產(chǎn)品中質(zhì)量指標(biāo)值落在上的件數(shù)大約為.
(3)由頻率分布直方圖和題設(shè)條件可得產(chǎn)品的成本分組及其頻率分布表如下:
組號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
分組 | |||||||
頻率 | 0.02 | 0.09 | 0.22 | 0.33 | 0.24 | 0.08 | 0.02 |
根據(jù)題意,生產(chǎn)該食品的平均成本:
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,設(shè),且,記;
(1)設(shè),其中,試求的單調(diào)區(qū)間;
(2)試判斷弦的斜率與的大小關(guān)系,并證明;
(3)證明:當(dāng)時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“工資條里顯紅利,個(gè)稅新政入民心”.隨著2019年新年鐘聲的敲響,我國(guó)自1980年以來,力度最大的一次個(gè)人所得稅(簡(jiǎn)稱個(gè)稅)改革迎來了全面實(shí)施的階段.某從業(yè)者為了解自己在個(gè)稅新政下能享受多少稅收紅利,繪制了他在26歲-35歲(2009年-2018年)之間各年的月平均收入(單位:千元)的散點(diǎn)圖:(注:年齡代碼1-10分別對(duì)應(yīng)年齡26-35歲)
(1)由散點(diǎn)圖知,可用回歸模型擬合與的關(guān)系,試根據(jù)有關(guān)數(shù)據(jù)建立關(guān)于的回歸方程;
(2)如果該從業(yè)者在個(gè)稅新政下的專項(xiàng)附加扣除為3000元/月,試?yán)茫?)的結(jié)果,將月平均收入視為月收入,根據(jù)新舊個(gè)稅政策,估計(jì)他36歲時(shí)每個(gè)月少繳納的個(gè)人所得稅.
附注:①參考數(shù)據(jù):,,,,
,,,其中:取,.
②參考公式:回歸方程中斜率和截距的最小二乘估計(jì)分別為,.
③新舊個(gè)稅政策下每月應(yīng)納稅所得額(含稅)計(jì)算方法及稅率表如下:
舊個(gè)稅稅率表(個(gè)稅起征點(diǎn)3500元) | 新個(gè)稅稅率表(個(gè)稅起征點(diǎn)5000元) | |||
繳稅 級(jí)數(shù) | 每月應(yīng)納稅所得額(含稅)收入個(gè)稅起征點(diǎn) | 稅率 | 每月應(yīng)納稅所得額(含稅)收入個(gè)稅起征點(diǎn)專項(xiàng)附加扣除 | 稅率 |
1 | 不超過1500元的都分 | 3 | 不超過3000元的都分 | 3 |
2 | 超過1500元至4500元的部分 | 10 | 超過3000元至12000元的部分 | 10 |
3 | 超過4500元至9000元的部分 | 20 | 超過12000元至25000元的部分 | 20 |
4 | 超過9000元至35000元的部分 | 25 | 超過25000元至35000元的部分 | 25 |
5 | 超過35000元至55000元的部分 | 30 | 超過35000元至55000元的部分 | 30 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列推理不屬于合情推理的是( )
A. 由銅、鐵、鋁、金、銀等金屬能導(dǎo)電,得出一切金屬都能導(dǎo)電.
B. 半徑為的圓面積,則單位圓面積為.
C. 由平面三角形的性質(zhì)推測(cè)空間三棱錐的性質(zhì).
D. 猜想數(shù)列2,4,8,…的通項(xiàng)公式為. .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列推理不屬于合情推理的是( )
A. 由銅、鐵、鋁、金、銀等金屬能導(dǎo)電,得出一切金屬都能導(dǎo)電.
B. 半徑為的圓面積,則單位圓面積為.
C. 由平面三角形的性質(zhì)推測(cè)空間三棱錐的性質(zhì).
D. 猜想數(shù)列2,4,8,…的通項(xiàng)公式為. .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線:的焦點(diǎn)為,直線與交于,兩點(diǎn),的面積為.
(1)求的方程;
(2)若,是上的兩個(gè)動(dòng)點(diǎn),,試問:是否存在定點(diǎn),使得?若存在,求的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如表是某位同學(xué)連續(xù)5次周考的數(shù)學(xué)、物理的成績(jī),結(jié)果如下:
周次 | 1 | 2 | 3 | 4 | 5 |
數(shù)學(xué)(分) | 79 | 81 | 83 | 85 | 87 |
物理(分) | 77 | 79 | 79 | 82 | 83 |
參考公式:,,表示樣本均值.
(1)求該生5次月考數(shù)學(xué)成績(jī)的平均分和物理成績(jī)的方差;
(2)一般來說,學(xué)生的數(shù)學(xué)成績(jī)與物理成績(jī)有較強(qiáng)的線性相關(guān)關(guān)系,根據(jù)上表提供的數(shù)據(jù),求兩個(gè)變量的線性回歸方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查某省高三男生身高情況,現(xiàn)從某校高三年級(jí)男生中隨機(jī)抽取50名測(cè)量身高,測(cè)量發(fā)現(xiàn)被測(cè)學(xué)生身高全部介于157.5cm和187.5cm之間,將測(cè)量結(jié)果按如下方式分成6組:第一組,第二組,…,第六組,下圖是按照上述分組方法得到的頻率分布直方圖.
(1)求該學(xué)校高三年級(jí)男生的平均身高;
(2)利用分層抽樣的方式從這50名男生中抽出20人,求抽出的這20人中,身高在177.5cm以上(含177.5cm)的人數(shù);
(3)從根據(jù)(2)選出的身高在177.5cm以上(含177.5cm)的男生中任意抽取2人,求此二人來自于不同組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P—ABC中,PA=3,PB=PC=,AB=AC=2,BC=.
(1)求二面角B—AP—C大小的余弦值;
(2)求點(diǎn)P到底面ABC的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com