【題目】已知橢圓C)的短軸長為,離心率為.

1)求橢圓C的標準方程;

2)設(shè)MN分別為橢圓C的左、右頂點,過點且不與x軸重合的直線與橢圓C相交于A,B兩點是否存在實數(shù)t),使得直線與直線的交點P滿足P,AM三點共線?若存在,求出的方程;若不存在,請說明理由.

【答案】1

2)存在,直線

【解析】

1)利用橢圓的幾何性質(zhì)建立方程組求解即可;

2)假設(shè)存在滿足題意的直線,先設(shè)出的方程,設(shè)出,,,聯(lián)立方程組得出根與系數(shù)關(guān)系,然后求出點坐標,利用三點共線建立方程,將根與系數(shù)關(guān)系代入整理、化簡、求解即可.

解:(1)由于短軸長為,所以.

又離心率,且,解得.

所以橢圓C的標準方程為.

2)假設(shè)存在直線滿足條件,設(shè)的方程為,且,.

聯(lián)立方程組,消去x可得,

,.

由于,所以直線的方程為,

)與直線的交點P的坐標為,且,.

,三點共線時有共線.

所以,即.

由于,所以,

所以,解得,所以存在直線滿足條件.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某班主任對全班50名學生學習積極性和對待班級工作的態(tài)度進行了調(diào)查,統(tǒng)計數(shù)據(jù)如下表所示:

積極參加

班級工作

不太主動參加

班級工作

合計

學習積極性高

18

7

25

學習積極性一般

6

19

25

合計

24

26

50

1)如果隨機抽查這個班的一名學生,那么抽到積極參加班級工作的學生的概率是多少?抽到不太主動參加班級工作且學習積極性一般的學生的概率是多少?

2)試運用獨立性檢驗的思想方法能否有99.9%的把握認為學生的學習積極性與對待班級工作的態(tài)度有關(guān)系?并說明理由.(參考下表)

P(K2

k)

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2017727日上映以來,《戰(zhàn)狼2》的票房一路高歌猛進,并不斷刷新華語電影票房紀錄.825日官方宣布沖破53億票房之后,根據(jù)外媒Worldwide Box Office給出的2017年周末全球票房最新排名,《戰(zhàn)狼2》以8.151億美元(約54.18億元)的成績成功殺入前五.通過收集并整理了《戰(zhàn)狼2》上映前兩周的票房(單位:億元)數(shù)據(jù),繪制出下面的條形圖.根據(jù)該條形圖,下列結(jié)論錯誤的是(

A.在《戰(zhàn)狼2》上映前兩周中,前四天票房逐日遞增

B.在《戰(zhàn)狼2》上映前兩周中,日票房超過2億元的共有12

C.在《戰(zhàn)狼2》上映前兩周中,85日,86日達到了票房的高峰期

D.在《戰(zhàn)狼2》上映前兩周中,前五日的票房平均數(shù)高于后五日的票房平均數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在三棱錐中,底面,,的中點.

(1)求證:

(2)若二面角的大小為,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左焦點為,點為橢圓的左、右頂點,點是橢圓上一點,且直線的傾斜角為,,已知橢圓的離心率為.

1)求橢圓的方程;

2)設(shè)為橢圓上異于的兩點,若直線的斜率等于直線斜率的倍,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】大學就業(yè)部從該大學2018年已就業(yè)的大學本科畢業(yè)生中隨機抽取了100人進行月薪情況的問卷調(diào)查,經(jīng)統(tǒng)計發(fā)現(xiàn),他們的月薪收入在3000元到10000元之間,具體統(tǒng)計數(shù)據(jù)如表:

月薪(百萬)

人數(shù)

2

15

20

15

24

10

4

1)經(jīng)統(tǒng)計發(fā)現(xiàn),該大學2018屆的大學本科畢業(yè)生月薪(單位:百元)近似地服從正態(tài)分布,其中近似為樣本平均數(shù)(每組數(shù)據(jù)取區(qū)間的中點值).若落在區(qū)間的左側(cè),則可認為該大學本科生屬“就業(yè)不理想”的學生,學校將聯(lián)系本人,咨詢月薪過低的原因,為以后的畢業(yè)生就業(yè)提供更好的指導(dǎo)意見.現(xiàn)該校2018屆大學本科畢業(yè)生張茗的月薪為3600元,試判斷張茗是否屬于“就業(yè)不理想”的學生;

2)①將樣本的頻率視為總體的概率,若大學領(lǐng)導(dǎo)決定從大學2018屆所有本畢業(yè)生中任意選取5人前去探訪,記這5人中月薪不低于8000元的人數(shù)為,求的數(shù)學期望與方差;

②在(1)的條件下,中國移動贊助了大學的這次社會調(diào)查活動,并為這次參與調(diào)查的大學本科畢業(yè)生制定了贈送話費的活動,贈送方式為:月薪低于的獲贈兩次隨機話費,月薪不低于的獲贈一次隨機話費;每次贈送的話費及對應(yīng)的概率分別為:

贈送話費(單位:元)

50

100

150

概率

則張茗預(yù)期獲得的話費為多少元?(結(jié)果保留整數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為建設(shè)美麗新農(nóng)村,某村對本村布局重新進行了規(guī)劃,其平面規(guī)劃圖如圖所示,其中平行四邊形區(qū)域為生活區(qū),為橫穿村莊的一條道路,區(qū)域為休閑公園,,的外接圓直徑為.

1)求道路的長;

2)該村準備沿休閑公園的邊界修建柵欄,以防村中的家畜破壞公園中的綠化,試求柵欄總長的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知

(1)求的軌跡

(2)過軌跡上任意一點作圓的切線,設(shè)直線的斜率分別是,試問在三個斜率都存在且不為0的條件下, 是否是定值,請說明理由,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】乙兩人同時參加一次數(shù)學測試,共有20道選擇題,每題均有4個選項,答對得3,答錯或不答得0,甲和乙都解答了所有的試題,經(jīng)比較,他們只有2道題的選項不同,如果甲最終的得分為54,那么乙的所有可能的得分值組成的集合為________.

查看答案和解析>>

同步練習冊答案