長方體ABCD-A1B1C1D1中,AB=3,BC=2,AA1=1,一繩子從A沿著表面拉到C1的最短距離是(  )
A、
26
B、2
5
C、3
2
D、
14
考點:多面體和旋轉(zhuǎn)體表面上的最短距離問題
專題:操作型,空間位置關(guān)系與距離
分析:按三種不同方式展開長方體的側(cè)面,計算平面圖形中三條線段的長,比較得正確選項.
解答: 解:長方體ABCD-A1B1C1D1的表面可如圖三種方法展開后,A、C1兩點間的距離分別為:
(1+2)2+32
=3
2

(3+1)2+22
=2
5
,
(3+2)2+12
=
26

三者比較得3
2
是從點A沿表面到C1的最短距離.
故選:C.
點評:本題考查棱柱的結(jié)構(gòu)特征,考查分類討論思想,考查計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-
1
x
,g(x)=alnx(a∈R)
(1)a≥-2時,求F(x)=f(x)-g(x)的單調(diào)區(qū)間;
(2)設(shè)h(x)=f(x)+g(x),且h(x)有兩個極值點為x1,x2,其中x1∈(0,
1
2
],求h(x1)-h(x2)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,60°的二面角的棱上有A,B兩點,直線AC,BD分別在這個二面角的兩個半平面內(nèi),且都垂直于AB,已知AB=4,AC=6,BD=8,則CD的長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某算法的程序框圖如圖所示,若輸入a=1,b=2,c=3,則輸出的結(jié)果為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)已知數(shù)列{an}的通項公式an=n2-(6+2λ)n+2014,若a6或a7為數(shù)列{an}的最小項,則實數(shù)λ的取值范圍(  )
A、(3,4)
B、[2,5]
C、[3,4]
D、[
5
2
9
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下命題:
(1)在空間里,垂直于同一平面的兩個平面平行;
(2)兩條異面直線在同一個平面上的射影不可能平行;
(3)兩個不重合的平面α與β,若α內(nèi)有不共線的三個點到β的距離相等,則α∥β;
(4)不重合的兩直線a,b和平面α,若a∥b,b?α,則a∥α.
其中正確命題個數(shù)是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a、β是不重合的平面,a、b、c是不重合的直線,給出下列命題:
a⊥α
a?β
a⊥b
c⊥b
⇒a∥c
a∥α
b⊥a
⇒b⊥α

其中正確命題的個數(shù)是( 。
A、3B、2C、1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若|
b
|=2|
a
|≠0,
c
a
,
c
=
a
+
b
,則
a
b
的夾角為( 。
A、30°B、60°
C、90°D、120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在(0,+∞)上的增函數(shù),且滿足對于任意x,y∈R,都有f(xy)=f(x)+f(y)成立.若f(3)=1,且f(a)>f(a-1)+2,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案