【題目】在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為.

1)當時,判斷直線與曲線的位置關(guān)系;

2)若直線與曲線相交所得的弦長為,求的值.

【答案】1)相離;(2.

【解析】

1)根據(jù)參數(shù)方程和極坐標方程與普通方程的關(guān)系,進行轉(zhuǎn)化求解即可,利用圓心到直線的距離與半徑比較,得出直線與圓的位置關(guān)系.

2)由垂徑定理,得出圓心到直線的距離,進而求出直線方程中參數(shù)的值.

1)由

,

所以曲線的普通方程為.

時,由,得,

,得,

代入公式 ,即.

故直線的直角坐標方程為.

因為圓心到直線的距離為.

所以直線與圓相離.

2)由,得

代入公式 ,即.

由垂徑定理,得圓心到直線的距離為.

再由點到直線間的距離公式,得,

解得.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知離心率為的橢圓的短軸的兩個端點分別為、,為橢圓上異于、的動點,且的面積最大值為.

)求橢圓的方程;

)射線與橢圓交于點,過點作傾斜角互補的兩條直線,它們與橢圓的另一個交點分別為點和點,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】1)試比較的大小.

2)若函數(shù)的兩個零點分別為,

①求的取值范圍;

②證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)的圖象在點處的切線平行于軸,求函數(shù)上的最小值;

2)若關(guān)于的方程上有兩個解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是坐標原點,橢圓的左右焦點分別為,點在橢圓上,若的面積最大時且最大面積為.

1)求橢圓的標準方程;

2)直線與橢圓在第一象限交于點,點是第四象限內(nèi)的點且在橢圓上,線段被直線垂直平分,直線與橢圓交于另一點,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)在點P(1,)處的切線方程;

(2)若關(guān)于x的不等式有且僅有三個整數(shù)解,求實數(shù)t的取值范圍;

(3)存在兩個正實數(shù),滿足,求證

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩位同學參加某個知識答題游戲節(jié)目,答題分兩輪,第一輪為“選題答題環(huán)節(jié)”第二輪為“輪流坐莊答題環(huán)節(jié)”.首先進行第一輪“選題答題環(huán)節(jié)”,答題規(guī)則是:每位同學各自從備選的5道不同題中隨機抽出3道題進行答題,答對一題加10分,答錯一題(不答視為答錯)減5分,已知甲能答對備選5道題中的每道題的概率都是,乙恰能答對備選5道題中的其中3道題;第一輪答題完畢后進行第二輪“輪流坐莊答題環(huán)節(jié)”,答題規(guī)則是:先確定一人坐莊答題,若答對,繼續(xù)答下一題…,直到答錯,則換人(換莊)答下一題…以此類推.例如若甲首先坐莊,則他答第1題,若答對繼續(xù)答第2題,如果第2題也答對,繼續(xù)答第3題,直到他答錯則換成乙坐莊開始答下一題,…直到乙答錯再換成甲坐莊答題,依次類推兩人共計答完20道題游戲結(jié)束,假設由第一輪答題得分期望高的同學在第二輪環(huán)節(jié)中最先開始作答,且記第道題也由該同學(最先答題的同學)作答的概率為),其中,已知供甲乙回答的20道題中,甲,乙兩人答對其中每道題的概率都是,如果某位同學有機會答第道題且回答正確則該同學加10分,答錯(不答視為答錯)則減5分,甲乙答題相互獨立;兩輪答題完畢總得分高者勝出.回答下列問題

1)請預測第二輪最先開始作答的是誰?并說明理由

2)①求第二輪答題中,;

②求證為等比數(shù)列,并求)的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列4個說法中正確的有(

①命題,則的逆否命題為;

②若,則;

③若復合命題:為假命題,則p,q均為假命題;

的充分不必要條件.

A.①②③B.②③④C.①②④D.①③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,拋物線上的點到焦點的距離為2

1)求拋物線的方程和的值;

2)如圖,是拋物線上的一點,過作圓的兩條切線交軸于,兩點,若的面積為,求點的坐標.

查看答案和解析>>

同步練習冊答案