已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn)為F(-
2
,0)
,點(diǎn)F到右頂點(diǎn)的距離為
3
+
2

(I)求橢圓的方程;
(II)設(shè)直線l與橢圓交于A、B兩點(diǎn),且與圓x2+y2=
3
4
相切,求△AOB的面積為
3
2
時求直線l的斜率.
分析:(I)利用橢圓的左焦點(diǎn)為F(-
2
,0)
,點(diǎn)F到右頂點(diǎn)的距離為
3
+
2
,求出橢圓的幾何量,即可求得橢圓的方程;
(II)當(dāng)直線l的斜率不存在時,不符合題意;當(dāng)直線l的斜率存在時,設(shè)l的方程,利用直線l與圓x2+y2=
3
4
相切,確定m,k的關(guān)系,再利用韋達(dá)定理及△AOB的面積為
3
2
,即可求得直線l的斜率.
解答:解:(I)由題意得c=
2
,a+c=
3
+
2

a=
3
,∴b2=a2-c2=1
∴橢圓的方程為
x2
3
+y2=1
;
(II)當(dāng)直線l的斜率不存在時,l的方程為x=±
3
2
,代入橢圓方程,可得y=±
3
2
,此時|AB|=
3
,△AOB的面積為S=
1
2
|AB|×
3
2
=
3
4
,不符合題意;
當(dāng)直線l的斜率存在時,設(shè)l的方程為y=kx+m,A(x1,y1),B(x2,y2),
∵直線l與圓x2+y2=
3
4
相切,∴
|m|
1+k2
=
3
2
,即m2=
3
4
(k2+1)

直線與橢圓方程聯(lián)立,消去y可得(3k2+1)x2+6kmx+3m2-3=0
∴x1+x2=
-6km
3k2+1
,x1x2=
3m2-3
3k2+1

∴|AB|=
1+k2
×
(
-6km
3k2+1
)2-4×
3m2-3
3k2+1
=
3
×
1+k2

1
2
×
3
×
1+k2
×
3
2
=
3
2
,∴k=±
3
3

即直線l的斜率為±
3
3
點(diǎn)評:本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線與圓、橢圓的位置關(guān)系,考查三角形面積的計(jì)算,正確運(yùn)用韋達(dá)定理是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦點(diǎn)分別為F1,F(xiàn)2,左頂點(diǎn)為A,若|F1F2|=2,橢圓的離心率為e=
1
2

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程,
(Ⅱ)若P是橢圓上的任意一點(diǎn),求
PF1
PA
的取值范圍
(III)直線l:y=kx+m與橢圓相交于不同的兩點(diǎn)M,N(均不是長軸的頂點(diǎn)),AH⊥MN垂足為H且
AH
2
=
MH
HN
,求證:直線l恒過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左焦點(diǎn)F(-c,0)是長軸的一個四等分點(diǎn),點(diǎn)A、B分別為橢圓的左、右頂點(diǎn),過點(diǎn)F且不與y軸垂直的直線l交橢圓于C、D兩點(diǎn),記直線AD、BC的斜率分別為k1,k2
(1)當(dāng)點(diǎn)D到兩焦點(diǎn)的距離之和為4,直線l⊥x軸時,求k1:k2的值;
(2)求k1:k2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率是
3
2
,且經(jīng)過點(diǎn)M(2,1),直線y=
1
2
x+m(m<0)
與橢圓相交于A,B兩點(diǎn).
(1)求橢圓的方程;
(2)當(dāng)m=-1時,求△MAB的面積;
(3)求△MAB的內(nèi)心的橫坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•威海二模)已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為e=
6
3
,過右焦點(diǎn)做垂直于x軸的直線與橢圓相交于兩點(diǎn),且兩交點(diǎn)與橢圓的左焦點(diǎn)及右頂點(diǎn)構(gòu)成的四邊形面積為
2
6
3
+2

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)點(diǎn)M(0,2),直線l:y=1,過M任作一條不與y軸重合的直線與橢圓相交于A、B兩點(diǎn),若N為AB的中點(diǎn),D為N在直線l上的射影,AB的中垂線與y軸交于點(diǎn)P.求證:
ND
MP
AB
2
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)為F,過F作y軸的平行線交橢圓于M、N兩點(diǎn),若|MN|=3,且橢圓離心率是方程2x2-5x+2=0的根,求橢圓方程.

查看答案和解析>>

同步練習(xí)冊答案