設(shè)是函數(shù)的導函數(shù),將的圖象畫在同一直角坐標系中,不可能正確的是(    )
D
考點:
分析:本題可以考慮排除法,容易看出選項D不正確,因為D的圖象,在整個定義域內(nèi),不具有單調(diào)性,但y=f(x)和y=f′(x)在整個定義域內(nèi)具有完全相同的走勢,不具有這樣的函數(shù).
解答:解析:檢驗易知A、B、C均適合,不存在選項D的圖象所對應的函數(shù),在整個定義域內(nèi),不具有單調(diào)性,但y=f(x)和y=f′(x)在整個定義域內(nèi)具有完全相同的走勢,不具有這樣的函數(shù),故選D.
點評:考查函數(shù)的單調(diào)性問題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
設(shè)函數(shù)f(x)=lnx,g(x)=ax+,函數(shù)f(x)的圖像與x軸的交點也在函數(shù)g(x)的圖像上,且在此點處f(x)與g(x)有公切線.
(Ⅰ) 求a、b的值;  
(Ⅱ) 設(shè)x>0,試比較f(x)與g(x)的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題14分)已知函數(shù).
(1)若,點P為曲線上的一個動點,求以點P為切點的切線斜率取最小值時的切線方程;
(2)若函數(shù)上為單調(diào)增函數(shù),試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知函數(shù)f(x)=alnx+x2(a為實常數(shù)).
(Ⅰ)若a=-2,求證:函數(shù)f(x)在(1,+∞)上是增函數(shù);
(Ⅱ)求函數(shù)f(x)在[1,e]上的最小值及相應的x值;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

、已知函數(shù),
(1)求曲線在點的切線方程;
(2)求此函數(shù)的單調(diào)區(qū)間。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知,求(     )
A.B.C.2D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

某物體做直線運動,其運動規(guī)律是s=t2+( t的單位是秒,s的單位是米),則它在3
秒末的瞬時速度為      ;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題12分)
設(shè)函數(shù)
(1)求曲線在點處的切線方程。
(2)若函數(shù)在區(qū)間內(nèi)單調(diào)遞增,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

 函數(shù)在區(qū)間上的最大值是       

查看答案和解析>>

同步練習冊答案