設(shè)
n
P1+P2+…+Pn
為n個(gè)正數(shù)P1,P2,…,Pn的“均倒數(shù)”,已知數(shù)列{an}的前n項(xiàng)的“均倒數(shù)”為
1
3n+2
,則
1
a1a2
+
1
a2a3
+???+
1
anan+1
=
 
考點(diǎn):數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:根據(jù)數(shù)列{an}的前n項(xiàng)的“均倒數(shù)”為
1
3n+2
,即可求出Sn,然后利用裂項(xiàng)法進(jìn)行求和即可.
解答: 解:∵數(shù)列{an}的前n項(xiàng)的“均倒數(shù)”為
1
3n+2
,
n
Sn
=
1
3n+2
,
即Sn=3n2+2n,
∴an=Sn-Sn-1=6n-1,
∴數(shù)列{an}是等差數(shù)列,公差d=6.
1
anan+1
=
1
(6n-1)(6n+5)
=
1
6
(
1
6n-1
-
1
6n+5
)

1
a1a2
+
1
a2a3
+???+
1
anan+1
=
1
6
(
1
5
-
1
11
+
1
11
-
1
17
+???+
1
6n-1
-
1
6n+5
)
=
1
6
(
1
5
-
1
6n+5
)=
n
5(6n+5)
,
故答案為:
n
5(6n+5)
點(diǎn)評(píng):本題主要考查數(shù)列的求和,利用裂項(xiàng)法是解決本題的關(guān)鍵,根據(jù)條件求出數(shù)列{an}的通項(xiàng)公式是突破點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x|y=log2(x-2)},B={x|x2-3x-4<0},則A∪B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于x的方程(x2-1)2-|x2-1|+k=0.
(Ⅰ)當(dāng)k=0時(shí),寫出方程的所有實(shí)數(shù)解;
(Ⅱ)求實(shí)數(shù)k的范圍,使得方程恰有8個(gè)不同的實(shí)數(shù)解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)變量x,y滿足約束條件
x-y+5≥0
x+y≥0
x-3≤0
,則目標(biāo)函數(shù)z=2y-x的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)都乘以2,再減去3,得到一組新的數(shù)據(jù),如果求得新數(shù)據(jù)的平均數(shù)為7,方差為4,則原來(lái)數(shù)據(jù)的平均數(shù)為
 
,方差為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=f(x)(x∈R)滿足f(x-1)=f(x+1),且x∈[-1,1]時(shí),f(x)=|x|,函數(shù)g(x)=
sinπx(x>0)
-
1
x
  (x<0)
,則函數(shù)h(x)=f(x)-g(x)在區(qū)間[-5,5]上的零點(diǎn)個(gè)數(shù)為( 。
A、10B、9C、8D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

a
均為非零向量,則
a
b
=|
a
||
b
|是
a
b
共線的( 。
A、必要不充分條件
B、充分不必要條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=2x-1-x2的零點(diǎn)的個(gè)數(shù)為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)計(jì)算0.064-
1
3
-(-
1
8
)0+16
3
4
+0.25
1
2
+2log36-log312

(2)求不等式log0.5(3x-1)>1的解集.

查看答案和解析>>

同步練習(xí)冊(cè)答案