【題目】如圖,在邊長為1的正方形ABCD中,EAB的中點,P為以A為圓心,AB為半徑的圓。ㄔ谡叫蝺(nèi),包括邊界點)上的任意一點,則的取值范圍是________; 若向量,則的最小值為_________.

【答案】

【解析】分析首先根據(jù)圖形的特征,建立適當?shù)钠矫嬷苯亲鴺讼,根?jù)正方形的邊長,設(shè)出點P的坐標,利用終點坐標減去起點坐標,得到對應(yīng)向量的坐標利用向量數(shù)量積坐標公式求得結(jié)果;再者就是利用向量相等得到坐標的關(guān)系,將其值轉(zhuǎn)化為對應(yīng)自變量的函數(shù)關(guān)系,結(jié)合自變量的取值范圍,求得最小值.

詳解:如圖,以A為原點,以AB所在直線為x軸,建立平面直角坐標系,結(jié)合題意,可知,所以 因為,所以所以,所以的范圍是;

根據(jù)可得,,從而可以求得

所以,

因為,所以,所以當取得最大值1時,同時取得最小值0,這時取得最小值為所以的最小值是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù),有下列結(jié)論:

的定義域為(-1, 1); 的值域為(, );

的圖象關(guān)于原點成中心對稱; 在其定義域上是減函數(shù);

⑤對的定義城中任意都有.

其中正確的結(jié)論序號為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐P-ABC中,PA⊥底面ABC, .點D,E,N分別為棱PA,PCBC的中點,M是線段AD的中點,PA=AC=4,AB=2.

(Ⅰ)求證:MN∥平面BDE;

(Ⅱ)求二面角C-EM-N的正弦值;

(Ⅲ)已知點H在棱PA上,且直線NH與直線BE所成角的余弦值為,求線段AH的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,曲線過點,其參數(shù)方程為為參數(shù), ),以為極點, 軸非負半軸為極軸,建立極坐標系,曲線的極坐標方程為.

(1)求曲線的普通方程和曲線的直角坐標方程;

(2)求已知曲線和曲線交于兩點,且,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)為打入國際市場,決定從兩種產(chǎn)品中只選擇一種進行投資生產(chǎn).已知投資生產(chǎn)這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如下表:(單位:萬美元)

項目類別

年固定成本

每件產(chǎn)品成本

每件產(chǎn)品銷售價

每年最多可生產(chǎn)的件數(shù)

產(chǎn)品

20

10

200

產(chǎn)品

40

8

18

120

其中年固定成本與年生產(chǎn)的件數(shù)無關(guān),為待定常數(shù),其值由生產(chǎn)產(chǎn)品的原材料價格決定,預(yù)計.另外,年銷售產(chǎn)品時需上交萬美元的特別關(guān)稅.假設(shè)生產(chǎn)出來的產(chǎn)品都能在當年銷售出去.

1)寫出該廠分別投資生產(chǎn),兩種產(chǎn)品的年利潤與生產(chǎn)相應(yīng)產(chǎn)品的件數(shù)之間的函數(shù)關(guān)系,并指明其定義域;

2)如何投資才可獲得最大年利潤?請你做出規(guī)劃.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,直線過點,且傾斜角為,在極坐標系(與平面直角坐標系取相同的長度,以原點為極點,軸的非負半軸為極軸)中,曲線的極坐標方程為

1)求直線的參數(shù)方程與曲線的直角坐標方程;

2)設(shè)曲線與直線交于點,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016年1月1日,我國實行全面二孩政策,同時也對婦幼保健工作提出了更高的要求.某城市實行網(wǎng)格化管理,該市婦聯(lián)在網(wǎng)格1與網(wǎng)格2兩個區(qū)域內(nèi)隨機抽取12個剛滿8個月的嬰兒的體重信息,體重分布數(shù)據(jù)的莖葉圖如圖所示(單位:斤,2斤1千克),體重不超過千克的為合格.

(1)從網(wǎng)格1與網(wǎng)格2分別隨機抽取2個嬰兒,求網(wǎng)格1至少有一個嬰兒體重合格且網(wǎng)格2至少有一個嬰兒體重合格的概率;

(2)婦聯(lián)從網(wǎng)格1內(nèi)8個嬰兒中隨機抽取4個進行抽檢,若至少2個嬰兒合格,則抽檢通過,若至少3個合格,則抽檢為良好,求網(wǎng)格1在抽檢通過的條件下,獲得抽檢為良好的概率;

(3)若從網(wǎng)格1與網(wǎng)格2內(nèi)12個嬰兒中隨機抽取2個,用表示網(wǎng)格2內(nèi)嬰兒的個數(shù),求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=|xa|+2a,且不等式fx)≤4的解集為{x|1x3}

1)求實數(shù)a的值.

2)若存在實數(shù)x0,使fx0)≤5m2+mf(﹣x0)成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 )經(jīng)過點,且兩焦點與短軸的一個端點的連線構(gòu)成等腰直角三角形.

(1)求橢圓的方程;

(2)動直線 )交橢圓、兩點,試問:在坐標平面上是否存在一個定點,使得以為直徑的圓恒過點.若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案