在復平面內,復數(shù)z=
2a
1+i
+i(其中a∈R,i為虛數(shù)單位)對應的點不可能位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限
考點:復數(shù)的代數(shù)表示法及其幾何意義
專題:數(shù)系的擴充和復數(shù)
分析:對所給的進行化簡,由復數(shù)的除法規(guī)則,將復數(shù)化簡成代數(shù)形式,推出復數(shù)對應的點,即可判斷選項.
解答: 解:復數(shù)z=
2a
1+i
+i=
2a(1-i)
(1+i)(1-i)
+i=
2a-2ai
2
+i
=a+(1-a)i,
當a∈(0,1)時,1-a>0,復數(shù)對應的點在第一象限,
當a∈(-∞,0)時,1-a>0,復數(shù)對應的點在第二象限,
當a∈(1,+∞)時,1-a<0,復數(shù)對應的點在第四象限,
當a=0或1時,復數(shù)對應的點在實軸或虛軸上,
在復平面內,復數(shù)z=
2a
1+i
+i(其中a∈R,i為虛數(shù)單位)對應的點不可能位于第三象限.
故選:C.
點評:本題考查復數(shù)的基本概念及復數(shù)的除法運算,解題的關鍵是熟練掌握復數(shù)的除法運算及準確理解復數(shù)的基本概念,將題設條件正確轉化.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若要做一個容積為108的方底(底為正方形)無蓋的水箱,則它的高為
 
時,材料最省.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若f(x)=sin(2x+
π
6
)-cos2x,則f(x)在[0,
π
2
]上的最大值與最小值之和為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題,其中正確的命題是
 
(把所有正確的命題的選項都填上).
①函數(shù)y=f(x-2)和y=f(2-x)的圖象關于直線x=2對稱.
②在R上連續(xù)的函數(shù)f(x)若是增函數(shù),則對任意x0∈R均有f′(x0)>0成立.
③底面是等邊三角形,側面都是等腰三角形的三棱錐是正三棱錐.
④若P為雙曲線x2-
y2
9
=1上一點,F(xiàn)1、F2為雙曲線的左右焦點,且|PF2|=4,則|PF1|=2或6
⑤已知函數(shù)y=2sin(ωx+θ)(ω>0,0<θ<π)為偶函數(shù),其圖象與直線y=2的交點的橫坐標為x1,x2,若|x1-x2|的最小值為π,則ω的值為2,θ的值為
π
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在(
x
+
1
3x
5的展開式中的常數(shù)項為p,則
1
0
(3x2+p)dx=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x=log3e,y=log97,z=e
1
2
,則( 。
A、x>y>z
B、y>z>x
C、z>y>x
D、z>x>y

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2sin(ωx+φ)的相鄰對稱軸之間距離為
π
2
,點(
π
3
,0)是其圖象的一個對稱中心,則下列各式中符合條件的解析式是( 。
A、y=2sin(4x-
π
3
B、y=2sin(4x+
π
6
C、y=2sin(2x+
π
3
D、y=2sin(2x-
π
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中正確的是(  )
A、命題“若x2-5x+6=0,則x=2”的逆命題是“若x≠2,則x2-5x+6≠0”
B、對命題p:?x∈R,使得x2+x+1<0,則?p:?x∈R,則x2+x+1<0
C、著實數(shù)x,y∈[0,1],則滿足
x2+y2<1
x+y≥1
的概率是
π
4
-
1
2
D、已知a=
π
0
sinxdx,則點(
3
,a)到直線
3
x-y+1=0的距離為3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中,既是奇函數(shù)又在其定義域內是增函數(shù)的是( 。
A、f(x)=cosx
B、f(x)=sinx+x
C、f(x)=x2+1
D、f(x)=x3-3x

查看答案和解析>>

同步練習冊答案