【答案】
分析:(1)求導函數(shù),令由f'(x)≥0,對a分類討論,即可求得函數(shù)f(x)的單調增區(qū)間;
(2)根據(jù)x=2是f(x)的極值點,求得函數(shù)的解析式,進而可得函數(shù)h(x)的解析式,求得A(0,m)(m≠0)不在曲線上,設切點坐標為(a,h(a)),可得2a
3-3a
2+m=0,于是問題轉化為關于a的方程2a
3-3a
2+m=0有三個不等實根,構造函數(shù),可求m的取值范圍;
(3)確定函數(shù)f(x)、g(x)的值域,要滿足題意,只需a
2+4-(-2a
2+a+2)<12且a>1,由此可求實數(shù)a的取值范圍.
解答:解:(1)∵f(x)=[x
2-(a+2)x-2a
2+a+2]e
x
∴f'(x)=(x
2-ax-2a
2)e
x
由f'(x)≥0得:(x+a)(x-2a)≥0
①當a>0時,x≤-a或x≥2a,∴f(x)的增區(qū)間為(-∞,-a],[2a,+∞)
②當a=0時,x∈R,∴f(x)的增區(qū)間為(-∞,+∞)
③當a<0時,x≤2a或x≥-a,∴f(x)的增區(qū)間為(-∞,-a],[-a,+∞)
(2)∵x=2是f(x)的極值點,∴f′(2)=0即a
2+a-2=0,∴a=-2或a=1
∵a>0,∴a=1,∴f(x)=(x
2-3x+1)e
x,∴h(x)=xe
-xf(x)=x
3-3x
2+x.
∵A(0,m)(m≠0),∴A不在曲線上
設切點坐標為(a,h(a)),則h′(a)=
,即2a
3-3a
2+m=0
于是問題轉化為關于a的方程2a
3-3a
2+m=0有三個不等實根
令φ(a)=2a
3-3a
2+m,則φ′(a)=6a(a-1)
由φ′(a)≥0得a≤0或a≥1
∴φ(a)在(-∞,0)上單調遞增,在(0,1)上單調遞減,在(1,+∞)上單調遞增
∴當φ(0)=m>0,φ(1)=m-1<0,即0<m<1時,方程2a
3-3a
2+m=0有三個不等實根
∴m的取值范圍為(0,1);
(3)當a>1時,由(1)可知,函數(shù)在[0,1]上單調遞減,∴x
1∈[0,1]時,函數(shù)f(x)的值域為[(1-2a
2)e,-2a
2+a+2]
∵函數(shù)g(x)=(a
2+4)e
x,在[0,1]上單調遞增,∴x
2∈[0,1]時,函數(shù)g(x)的值域為[a
2+4,(a
2+4)e]
∵a
2+4>-2a
2+a+2
∴要滿足題意,只需a
2+4-(-2a
2+a+2)<12且a>1
∴1<a<2
∴實數(shù)a的取值范圍為(1,2).
點評:本題考查導數(shù)知識的運用,考查函數(shù)的單調性,考查曲線的切線,考查恒成立問題,正確求導,確定函數(shù)的單調性與最值時關鍵.