若集合A={x|-1≤2x+1≤3},B={x|
x-2
x
≤2},則A∩B=( 。
A、{x|-1≤x<0}
B、{x|0<x≤1}
C、{x|0≤x≤2}
D、{x|0≤x≤1}
考點:交集及其運算
專題:集合
分析:求出A與B中不等式的解集,確定出A與B,找出兩集合的交集即可.
解答: 解:由A中不等式解得:-1≤x≤1,即A={x|-1≤x≤1},
由B中不等式變形得:
x-2
x
-2≤0,即
x+2
x
≥0,
可化為x(x+2)≥0,且x≠0,
解得:x>0或x≤-2,即B={x|x≤-2或x>0},
則A∩B={x|0<x≤1}.
故選:B.
點評:此題考查了交集及其運算,熟練掌握交集的定義是解本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若對于預報變量y與解釋變量x的10組統(tǒng)計數(shù)據(jù)的回歸模型中,計算R2=0.95,又知殘差平方和為120.55,那么
10
i=1
(yi-
.
yi
2的值為( 。
A、241.1B、245.1
C、2411D、2451

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}滿足an+1=an+n+1,且a1=1,則a10=( 。
A、55B、56C、65D、66

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}中,已知a1=
1
3
,a3+a6=3,an=7,則n為(  )
A、19B、20C、21D、22

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an}是等比數(shù)列,a1=-1,a4=64,則S4=( 。
A、-51B、64C、85D、51

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中
AB
=
a
,
BC
=
b
,則
a
+
b
等于( 。
A、
CA
B、
BC
C、
AB
D、
AC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知長方體ABCD-A1B1C1D1,其中AB=BC=2,過A1、C1、B三點的平面截去長方體的一個角后.得到如圖所示的幾何體,且這個幾何體的體積為
40
3

(1)求幾何體ABCD-A1C1D1的表面積;
(2)在線段BC1上是否存在點P,使直線A1P與C1D垂直,如果存在,求線段A1P的長,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=aex,g(x)=lnx-lna,其中a為常數(shù),且函數(shù)y=f(x)和y=g(x)的圖象在它們與坐標軸交點處的切線互相平行.
(Ⅰ)求常數(shù)a的值;
(Ⅱ)若存在x∈[0,+∞),使不等式
x-m
f(x)
>x成立,求實數(shù)m的取值范圍;
(Ⅲ)令u(x)=|f(x)-g(x)|,求證:u(x)>2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲、乙兩個進行乒乓球比賽,約定每局勝者得1分,負者得0分,比賽進行到有一人比對方多2分或打滿6局時停止,設(shè)甲在每局中獲勝的概率為
2
3
,乙在每局中獲勝的概率為
1
3
,且各局勝負相互獨立.
(1)求甲在打的局數(shù)最少的情況下獲勝的概率;
(2)求比賽停止時已打局數(shù)ξ的期望.

查看答案和解析>>

同步練習冊答案