如圖,點(diǎn)P(0,-1)是橢圓C1:=1(a>b>0)的一個(gè)頂點(diǎn),C1的長(zhǎng)軸是圓C2:x2+y2=4的直徑.l1,l2是過(guò)點(diǎn)P且互相垂直的兩條直線,其中l1交圓C2于A,B兩點(diǎn),l2交橢圓C1于另一點(diǎn)D.
(1)求橢圓C1的方程;
(2)求當(dāng)△ABD的面積取最大值時(shí),直線l1的方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
動(dòng)點(diǎn)到定點(diǎn)與到定直線,的距離之比為 .
(1)求的軌跡方程;
(2)過(guò)點(diǎn)的直線(與x軸不重合)與(1)中軌跡交于兩點(diǎn)、.探究是否存在一定點(diǎn)E(t,0),使得x軸上的任意一點(diǎn)(異于點(diǎn)E、F)到直線EM、EN的距離相等?若存在,求出t的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓短軸的一個(gè)端點(diǎn)為,離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線交橢圓于、兩點(diǎn),若.求
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知橢圓C:+y2=1,A、B是四條直線x=±2,y=±1所圍成的兩個(gè)頂點(diǎn).
(1)設(shè)P是橢圓C上任意一點(diǎn),若=m+n,求證:動(dòng)點(diǎn)Q(m,n)在定圓上運(yùn)動(dòng),并求出定圓的方程;
(2)若M、N是橢圓C上兩上動(dòng)點(diǎn),且直線OM、ON的斜率之積等于直線OA、OB的斜率之積,試探求△OMN的面積是否為定值,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C1:+y2=1,橢圓C2以C1的長(zhǎng)軸為短軸,且與C1有相同的離心率.
(1)求橢圓C2的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)A,B分別在橢圓C1和C2上,=2,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)橢圓M:=1(a>)的右焦點(diǎn)為F1,直線l:x=與x軸交于點(diǎn)A,若1=2 (其中O為坐標(biāo)原點(diǎn)).
(1)求橢圓M的方程;
(2)設(shè)P是橢圓M上的任意一點(diǎn),EF為圓N:x2+(y-2)2=1的任意一條直徑(E,F為直徑的兩個(gè)端點(diǎn)),求·的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的離心率為,且經(jīng)過(guò)點(diǎn). 過(guò)它的兩個(gè)焦點(diǎn),分別作直線與,交橢圓于A、B兩點(diǎn),交橢圓于C、D兩點(diǎn),且.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求四邊形的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)F1,F2分別是橢圓E:x2+=1(0<b<1)的左、右焦點(diǎn),過(guò)F1的直線l與E相交于A,B兩點(diǎn),且|AF2|,|AB|,|BF2|成等差數(shù)列.
(1)求|AB|;
(2)若直線l的斜率為1,求b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知離心率的橢圓一個(gè)焦點(diǎn)為.
(1)求橢圓的方程;
(2) 若斜率為1的直線交橢圓于兩點(diǎn),且,求直線方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com