分析 由題意可知:$\overrightarrow{{B}_{2}{A}_{2}}$=(a,-b),$\overrightarrow{{F}_{2}{B}_{1}}$=(-c,-b),由由P點在以B1A2為直徑的圓周上,則∠B1PA2=90°,則$\overrightarrow{{B}_{2}{A}_{2}}$•$\overrightarrow{{F}_{2}{B}_{1}}$=0,根據向量數(shù)量積的坐標表示,求得-ac+b2=0,由橢圓的性質可知:b2=a2-c2,整理得:e2+e-1=0,根據橢圓的離心率的取值范圍,即可求得離心率e的值.
解答 解:根據題意:橢圓的長半軸、短半軸、半焦距分別為a,b,c,
則$\overrightarrow{{B}_{2}{A}_{2}}$=(a,-b),$\overrightarrow{{F}_{2}{B}_{1}}$=(-c,-b),
由P點在以B1A2為直徑的圓周上,
∴∠B1PA2=90°,
∴$\overrightarrow{{B}_{2}{A}_{2}}$•$\overrightarrow{{F}_{2}{B}_{1}}$=0,
∴-ac+b2=0,
由b2=a2-c2,即a2-ac-c2=0,等式兩邊同除以a2,
由e=$\frac{c}{a}$,整理得:e2+e-1=0,
解得:e=$\frac{-1±\sqrt{5}}{2}$,
由0<e<1,
∴e=$\frac{\sqrt{5}-1}{2}$
故答案為:$\frac{\sqrt{5}-1}{2}$.
點評 本題考查橢圓的標準方程及簡單幾何性質,考查向量數(shù)量積的坐標表示,考查計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (4,3),6 | B. | (4,-3),6 | C. | (4,3),36 | D. | (4,-3),36 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 最大值為-$\frac{1}{2}$ | B. | 最小值為-$\frac{1}{2}$ | C. | 最大值為1 | D. | 最小值為1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-1,+∞) | B. | (-∞,-1) | C. | (-∞,+∞) | D. | [-1,1)∪(1,+∞) |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com