2.已知橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),F(xiàn)1,F(xiàn)2為左、右焦點,A1,A2,B1,B2分別是其左、右、下、上頂點,直線B1F2交直線B2A2于P點,若P點在以B1A2為直徑的圓周上,則橢圓離心率是$\frac{\sqrt{5}-1}{2}$.

分析 由題意可知:$\overrightarrow{{B}_{2}{A}_{2}}$=(a,-b),$\overrightarrow{{F}_{2}{B}_{1}}$=(-c,-b),由由P點在以B1A2為直徑的圓周上,則∠B1PA2=90°,則$\overrightarrow{{B}_{2}{A}_{2}}$•$\overrightarrow{{F}_{2}{B}_{1}}$=0,根據向量數(shù)量積的坐標表示,求得-ac+b2=0,由橢圓的性質可知:b2=a2-c2,整理得:e2+e-1=0,根據橢圓的離心率的取值范圍,即可求得離心率e的值.

解答 解:根據題意:橢圓的長半軸、短半軸、半焦距分別為a,b,c,
則$\overrightarrow{{B}_{2}{A}_{2}}$=(a,-b),$\overrightarrow{{F}_{2}{B}_{1}}$=(-c,-b),
由P點在以B1A2為直徑的圓周上,
∴∠B1PA2=90°,
∴$\overrightarrow{{B}_{2}{A}_{2}}$•$\overrightarrow{{F}_{2}{B}_{1}}$=0,
∴-ac+b2=0,
由b2=a2-c2,即a2-ac-c2=0,等式兩邊同除以a2
由e=$\frac{c}{a}$,整理得:e2+e-1=0,
解得:e=$\frac{-1±\sqrt{5}}{2}$,
由0<e<1,
∴e=$\frac{\sqrt{5}-1}{2}$
故答案為:$\frac{\sqrt{5}-1}{2}$.

點評 本題考查橢圓的標準方程及簡單幾何性質,考查向量數(shù)量積的坐標表示,考查計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.圓x2+y2-8x+6y-11=0的圓心、半徑是(  )
A.(4,3),6B.(4,-3),6C.(4,3),36D.(4,-3),36

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.奇函數(shù)f(x)滿足:①f(x)在(0,+∞)內是單調遞減函數(shù);②f(2)=0.則不等式(x-1)•f(x)>0的解集為(-2,0)∪(1,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.若函數(shù)f(x)=x2+4x+5-c的最小值為2,則函數(shù)y=f(x-3)的最小值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,∠ABC=∠BAD=90°,BC=2$\sqrt{2}$,AP=AD=AB=$\sqrt{2}$.
(Ⅰ)設平面PAD與平面PBC的交線為l,證明BC∥l;
(Ⅱ)試在棱PA上確定一點E,使得PC∥平面BDE,并求出此時$\frac{AE}{EP}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.在區(qū)間[-1,2]上任取一個數(shù)x,則事件“($\frac{1}{2}$)x≥1”發(fā)生的概率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.設變量x,y滿足約束條件:$\left\{\begin{array}{l}{y≥x}\\{x+2y≤2}\\{x≥-2}\end{array}\right.$,則z=$\frac{y+2}{x+2}$ 的( 。
A.最大值為-$\frac{1}{2}$B.最小值為-$\frac{1}{2}$C.最大值為1D.最小值為1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.在直角坐標系xOy中,直線l:$\left\{\begin{array}{l}{x=t}\\{y=-\sqrt{3}t}\end{array}\right.$(t為參數(shù)),曲線C1:$\left\{\begin{array}{l}{x=cosθ}\\{y=1+sinθ}\end{array}\right.$(θ為參數(shù)),以該直角坐標系的原點O為極點,x軸的非負半軸為極軸建立極坐標系,曲線C2的方程為ρ=-2cosθ+2$\sqrt{3}$sinθ.
(1)分別求曲線C1的極坐標方程和曲線C2的直角坐標方程;
(2)設直線l交曲線C1于O、A兩點,直線l交曲線C2于O、B兩點,求|AB|的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.函數(shù)f(x)=$\frac{x}{1-x}$+$\sqrt{x+1}$的定義域是( 。
A.[-1,+∞)B.(-∞,-1)C.(-∞,+∞)D.[-1,1)∪(1,+∞)

查看答案和解析>>

同步練習冊答案