已知橢圓C1,拋物線C2的焦點均在y軸上,C1的中心和C2 的頂點均為坐標(biāo)原點O,從每條曲線上取兩個點,將其坐標(biāo)記錄于下表中:
x 0 -1
2
4
y -2
2
1
16
-2 1
(Ⅰ)求分別適合C1,C2的方程的點的坐標(biāo);
(Ⅱ)求C1,C2的標(biāo)準(zhǔn)方程.
分析:(Ⅰ)拋物線方程可設(shè)為x2=my,將(4,1)和(-1,
1
16
)代入拋物線方程得到的解相同,可得拋物線方程,從而可知另外兩點在橢圓C1上;
(Ⅱ)由(Ⅰ)知拋物線方程,設(shè)出橢圓方程,代入另外兩點坐標(biāo),即可求出橢圓方程.
解答:解:(Ⅰ)橢圓C1,拋物線C2的焦點均在y軸上,
∴拋物線方程可設(shè)為x2=my,
將(4,1)和(-1,
1
16
)代入拋物線方程得到的解相同,且m=16;
∴(0,-2
2
)和(
2
,-2)在橢圓C1上;
(Ⅱ)由(Ⅰ)知,拋物線方程為x2=16y.
設(shè)橢圓C1的標(biāo)準(zhǔn)方程為:
y2
a2
+
x2
b2
=1(a>b>0)
,
將(0,-2
2
)和(
2
,-2)代入可得a=2
2
,b=2,
∴橢圓C1的標(biāo)準(zhǔn)方程為
y2
8
+
x2
4
=1
點評:本題考查橢圓、拋物線的方程,考查學(xué)生的計算能力,正確設(shè)出拋物線、橢圓的方程是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1和拋物線C2有公共焦點F(1,0),C1的中心和C2的頂點都在坐標(biāo)原點,過點M(4,0)的直線l與拋物線C2分別相交于A,B兩點.
(Ⅰ)寫出拋物線C2的標(biāo)準(zhǔn)方程;
(Ⅱ)若
AM
=
1
2
MB
,求直線l的方程;
(Ⅲ)若坐標(biāo)原點O關(guān)于直線l的對稱點P在拋物線C2上,直線l與橢圓C1有公共點,求橢圓C1的長軸長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1、拋物線C2的焦點均在x軸上,C1的中心和C2的頂點均為原點O,從每條曲線上取兩個點,將其坐標(biāo)記錄于下表中:
   C1  C2
 x  2  
2
 4  3
 y  0  
2
2
 4 -2
3
則C1、C2的標(biāo)準(zhǔn)方程分別為
 
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•江門二模)已知橢圓C1和拋物線C2有公共焦點F(1,0),C1的中心和C2的頂點都在坐標(biāo)原點,直線l過點M(4,0).
(1)寫出拋物線C2的標(biāo)準(zhǔn)方程;
(2)若坐標(biāo)原點O關(guān)于直線l的對稱點P在拋物線C2上,直線l與橢圓C1有公共點,求橢圓C1C的長軸長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•中山市三模)已知橢圓C1、拋物線C2的焦點均在x軸上,C1的中心和C2的頂點均為原點O,從每條曲線上取兩個點,將其坐標(biāo)記錄于下表中:
x 1 -
5
2
2
y -2
2
0 -4
15
5
(Ⅰ)求C1、C2的標(biāo)準(zhǔn)方程;
(Ⅱ)過點曲線的C2的焦點B的直線l與曲線C1交于M、N兩點,與y軸交于E點,若
EM
1
MB
EN
2
NB
,求證:λ12為定值.

查看答案和解析>>

同步練習(xí)冊答案